Math, asked by guest66475, 6 months ago

plssssss give me ans fast​

Attachments:

Answers

Answered by ADARSHBrainly
15

\underline{\underline{\sf{\large{\pink{\bigstar{ \: Given:}}}}}}

  • Four Right angled triangle and one quadrilateral.
  • AP = 30m
  • PQ = 20m
  • PR = 20m
  • RD = 30m
  • PB = 20m
  • RC = 40m
  • EQ = 30m

\underline{\underline{\sf{\large{\pink{\bigstar{ \: To \:  find :}}}}}}

  • Area of all field shown above.

\underline{\underline{\sf{\red{\large{\bigstar{ \:Solution :}}}}}}

{\boxed{\boxed{\green{ \sf{Area =  \frac{1}{2}  \times b \times h}}}}}

In △ ABP :-

  • AP = Height = 30m
  • PB = Base = 20m

{ \sf{Area =  \frac{1}{ \cancel2^{1} }  \times  \cancel{20}^{10}  \times 30}}

{\sf{Area = 1 \times 10 \times 30}}

 \blue{\sf{Area = 300 \:  {m}^{2} }}

In △ AQE :-

  • EQ = Base = 30 m
  • Height = AP + PQ = 30 + 20 = 50m

{ \sf{Area =  \frac{1}{ \cancel2^{1} }  \times  \cancel{30}^{15}  \times 50}}

{\sf{Area = 1 \times 15 \times 50}}

 \blue{\sf{Area = 750 \:  {m}^{2} }}

In △ DEQ :-

  • Base = EQ = 30m
  • Height = RD + QR = 20 + 30 = 50m

{ \sf{Area =  \frac{1}{ \cancel2^{1} }  \times  \cancel{30}^{15}  \times 50}}

{\sf{Area = 1 \times 15 \times 50}}

 \blue{\sf{Area = 750 \:  {m}^{2} }}

In △ RDC :-

  • Base = RC = 40m
  • Height = RD = 30m

{ \sf{Area =  \frac{1}{ \cancel2^{1} }  \times  \cancel{40}^{20}  \times 30}}

{\sf{Area = 1 \times 20\times 30}}

 \blue{\sf{Area = 600 \:  {m}^{2} }}

{ \underline{ \underline{\sf{\pink {In \:   Quadrilateral  \:  \: RPBC :-}}}}}

Construction:-

  • Draw BL Parallel and perpendicular to PR.

So, in Rectalgle RPBL :-

  • Length = PQ + RQ = 20 + 20 = 40 m
  • Breadth = 20 m

{\boxed{\boxed{\green{ \sf{Area =  Length × Breadth }}}}}

{ \sf{Area =  40 \times 20}}

 \blue{\sf{Area = 800 \:  {m}^{2} }}

In △ LCB :-

  • Height = BL = 40m
  • Base = LC = 20m

{ \sf{Area =  \frac{1}{ \cancel2^{1} }  \times  \cancel{20}^{10}  \times 40}}

{ \sf{Area =  10 \times 40}}

 \blue{\sf{Area = 400 \:  {m}^{2} }}

So, Area of DEAC field shown above is :-

{ \sf{Area =  300 + 750 + 750 + 600 + 800 + 400 {m}^{2} }}

{ \huge{ \boxed{ \boxed{ \red{\sf{Area = 4350 \:  {m}^{2} }}}}}}

Similar questions