Physics, asked by sabrina5817, 8 months ago

plsssssssssssssssss ​

Attachments:

Answers

Answered by Anonymous
172

\underline{\rm\red{Question - }}

Given, \rm \vec A = 2\hat{\imath} - \hat{\jmath} and \rm \vec B = 3\hat{\imath} - 2\hat{\jmath}

Then find unit vector of \rm (\vec A + \vec B)

\rm \bigcirc \dfrac{5\hat{\imath} + 3\hat{\jmath}}{\sqrt{34}}

\rm \bigcirc \dfrac{5\hat{\imath} - 3\hat{\jmath}}{\sqrt{35}}

\rm \bigcirc \dfrac{5\hat{\imath} - 3\hat{\jmath}}{\sqrt{34}}

\rm \bigcirc \dfrac{5\hat{\imath} + 4\hat{\jmath}}{\sqrt{35}}

━━━━━━━━━━━━

\underline{\rm\red{Answer - }}

The unit vector of \rm (\vec A + \vec B) = \rm \dfrac{5\hat{\imath} - 3\hat{\jmath}}{\sqrt{34}}

━━━━━━━━━━━━

\underline{\rm\red{Solution - }}

\underline{\rm\pink{Given - }}

\rm \vec A = 2\hat{\imath} - \hat{\jmath}

\rm \vec B = 3\hat{\imath} - 2\hat{\jmath}

━━━━━━━━━━━━

\underline{\rm\pink{To \: find - }}

Unit vector of \rm (\vec A + \vec B)

━━━━━━━━━━━━

\underline{\rm\pink{Formula \: used - }}

\boxed{\rm\purple{ Unit\: vector = \frac{Vector}{Magnitude\: of \:the \:vector}}}

━━━━━━━━━━━━

\rm \vec A = 2\hat{\imath} - \hat{\jmath}

\rm \vec B = 3\hat{\imath} - 2\hat{\jmath}

\implies\rm \vec A + \vec B = ( 3 + 2 )\hat{\imath} + ( - 1 - 2 )\hat{\jmath}

\implies\rm \vec A + \vec B =  5\hat{\imath} - 3\hat{\jmath}

━━━━━━━━━━━━

Magnitude of \rm \vec A + \vec B = |\vec A + \vec B |

\implies\rm \sqrt{5^2 + (-3)^2}

\implies\rm \sqrt{25 + 9}

\implies\rm \sqrt{34}

━━━━━━━━━━━━

\rm Unit\: vector =  \dfrac{Vector}{Magnitude\: of \:the \:vector}

\implies\rm \dfrac{5\hat{\imath} - 3\hat{\jmath}}{ \sqrt{34} }

\impliesUnit vector of \rm \vec A + \vec B = \dfrac{5\hat{\imath} - 3\hat{\jmath}}{ \sqrt{34} }

━━━━━━━━━━━━

Similar questions