Math, asked by preethi2005, 11 months ago

plssssssssssssssssssssssssss ans this question ​

Attachments:

Answers

Answered by paytmM
155

\large{\underline{\underline{\mathfrak{\green{\bf{Questions:-}}}}}}.

  • If the area of an equilateral triangle is \:81\sqrt{3}cm^2, then find its height and Side

\large{\underline{\underline{\mathfrak{\bf{Given\:Here:-}}}}}.

  • Area of Triangle = \:81\sqrt{3}.

\large{\underline{\underline{\mathfrak{\bf{Find\:here:-}}}}}.

  • height of triangle

  • Side of triangle

\large{\underline{\underline{\mathfrak{\bf{Explanation:-}}}}}.

We know that,

\large\boxed{\:Area\:of\:Equiletateral\:triangle\:=\frac{1}{4}\sqrt{3}a^2}

Where,

  • a is the side of triangle

Therefore ,

\implies\:Area\:=\frac{1}{4}\sqrt{3}a^2.

\implies\:81\sqrt{3}\:=\frac{1}{4}\sqrt{3}a^2

\implies\:a^2\:=\frac{81\times\:4\times\sqrt{3}}{\sqrt{3}}

\implies\:a^2\;=\:81×4.

\implies\:a\:=\sqrt{81×4}

\implies\:a\:=\:9×2

\huge\boxed{\:a\:=\18}

_________________________

Again, Using Formula of Triangle

\large\boxed{\:Area\:of\:triangle\:=\frac{1}{2}×base×height}.

_________________________

We , Know Here,

  • a = 18, Side of triangle(Base).

So, Keep value of a=18 in area of triangle ,

We Get,

\implies\:81\sqrt{3}\:=\frac{1}{2}×18×height

\implies\:9×height\:=\:81\sqrt{3}

\implies\:height\:=\frac{81×\sqrt{3}}{9}

\large\boxed{\:hieght\:=\:9\sqrt{3}}

\large{\underline{\underline{\mathfrak{\green{\sf{Answer:-}}}}}}.

  • Side (a) = 18

  • Height = \:9\sqrt{3}

___________________________

\large{\underline{\underline{\mathfrak{\pink{\sf{\:Answer\:Cheching:-  }}}}}}.

\large\boxed{\:Area\:of\:triangle\:=\frac{1}{2}×base×height}

Keep value of Area, base and height .

\implies\:81\sqrt{3}\:=\frac{1}{2}×18×9\sqrt{3}

\implies\:81\sqrt{3}\:=\:9×9\sqrt{3}

\large\:Thats\:proved

_________________________

Similar questions