Plszee answer this question and make ur brilliant answer.
Attachments:
S0rav:
Those who know answer pleas answer
Answers
Answered by
1
Hola there,
Let theta be 'A'
Given => cosA + sinA = √2 cosA
To prove => cosA - sinA = √2 sinA
Proof => cosA + sinA = √2 cosA
Squaring the above equation..
=> (cosA + sinA = √2 cosA)²
=> cos²A + sin²A + 2sinAcosA = 2cos²A
=> 1 - sin²A + 1 - cos²A + 2sinAcosA = 2cos²A
=> 2 - 2cos²A = sin²A + cos ²A - 2sinAcosA
=> 2(1 - cos²A) = (cosA - sinA)²
=> 2sin²A = (cosA - sinA)²
=> cosA - sinA = √2sin²A
=> cosA - sinA = √2 sinA
Hence Proved.
Hope this helps...:)
Let theta be 'A'
Given => cosA + sinA = √2 cosA
To prove => cosA - sinA = √2 sinA
Proof => cosA + sinA = √2 cosA
Squaring the above equation..
=> (cosA + sinA = √2 cosA)²
=> cos²A + sin²A + 2sinAcosA = 2cos²A
=> 1 - sin²A + 1 - cos²A + 2sinAcosA = 2cos²A
=> 2 - 2cos²A = sin²A + cos ²A - 2sinAcosA
=> 2(1 - cos²A) = (cosA - sinA)²
=> 2sin²A = (cosA - sinA)²
=> cosA - sinA = √2sin²A
=> cosA - sinA = √2 sinA
Hence Proved.
Hope this helps...:)
Answered by
1
this is your answer
---------------
---------------
Attachments:
Similar questions