plz ans ques no 7 nd 8
Attachments:
![](https://hi-static.z-dn.net/files/d1a/b101eb5db65acaf6d3a4ebf6257547a0.jpg)
Answers
Answered by
0
QUADRATICS EQUATIONS AND EXPRESSION
Attachments:
![](https://hi-static.z-dn.net/files/d22/2cb27ae0fdf072e329dc5aabc9931c01.jpg)
Answered by
1
Hey there !!!!!!!!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A quadratic equation of the form Ax²+Bx+C=0 has
✪ Imaginary roots if discriminant < 0
B²-4AC < 0
✪ Real and equal roots if discriminant = 0
B²-4AC=0
✪ Real and distinct roos if discriminant > 0
B²-4AC >0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7) x²-2ax+a²-b²-c²= 0 comparing with Ax²+Bx+C = 0
A=1 B= -2a C= a²-b²-c²
=B²-4AC
= 4a²-4(1)(a²-b²-c²)
= 4a²-4a²+4b²+4c²
=4b²+4c²
Square of a real number is always positive
4b²+4c² is greater than zero.
ROOTS ARE REAL.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~`
8) (a-b+c)x²+4(a-b)x+(a-b-c) comparing with Ax²+Bx+C = 0
A=(a-b+c) B=4(a-b) C= a-b-c
=B²-4AC
=(4(a-b))²-4(a-b+c)(a-b-c))
=16(a-b)²-4((a-b)²-c²)
=16(a-b)²-4(a-b)²+4c²
=12(a-b)²+4c²
Sum of squares is always positive
So (a-b+c)x²+4(a-b)x+(a-b-c) has REAL ROOTS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~``
Hope this helped you..............
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A quadratic equation of the form Ax²+Bx+C=0 has
✪ Imaginary roots if discriminant < 0
B²-4AC < 0
✪ Real and equal roots if discriminant = 0
B²-4AC=0
✪ Real and distinct roos if discriminant > 0
B²-4AC >0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7) x²-2ax+a²-b²-c²= 0 comparing with Ax²+Bx+C = 0
A=1 B= -2a C= a²-b²-c²
=B²-4AC
= 4a²-4(1)(a²-b²-c²)
= 4a²-4a²+4b²+4c²
=4b²+4c²
Square of a real number is always positive
4b²+4c² is greater than zero.
ROOTS ARE REAL.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~`
8) (a-b+c)x²+4(a-b)x+(a-b-c) comparing with Ax²+Bx+C = 0
A=(a-b+c) B=4(a-b) C= a-b-c
=B²-4AC
=(4(a-b))²-4(a-b+c)(a-b-c))
=16(a-b)²-4((a-b)²-c²)
=16(a-b)²-4(a-b)²+4c²
=12(a-b)²+4c²
Sum of squares is always positive
So (a-b+c)x²+4(a-b)x+(a-b-c) has REAL ROOTS
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~``
Hope this helped you..............
Similar questions