Math, asked by ronitkgxixox, 11 months ago

plz ans this question​

Attachments:

ronitkgxixox: i will make brainliest
venkateshprasad24820: what is brainliest

Answers

Answered by pratyush4211
10

x =  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5}  +  \sqrt{2} }  \\  \\

Rationalise The value of X

 \frac{ \sqrt{5}  -  \sqrt{2} }{ \sqrt{5}  +  \sqrt{2} }  \times  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5} -  \sqrt{2}  }  \\  \\  \frac{ (\sqrt{5}  -  \sqrt{2}) ^{2}  }{ { \sqrt{5} }^{2}  -  { \sqrt{2} }^{2} }  \\  \\  \frac{ { \sqrt{5} }^{2}  +  \sqrt{2} {}^{2}   -  2 \times  \sqrt{5}   \times  \sqrt{2} }{5 - 2}  \\  \\  \frac{5 + 2 - 2 \sqrt{10} }{3}  \\  \\  \frac{7 - 2 \sqrt{10} }{3}

x =  \frac{7 - 2 \sqrt{10} }{3}

y =  \frac{ \sqrt{5} +  \sqrt{2}   }{ \sqrt{5}  -  \sqrt{2} }

Rationalise the Value of Y

 \frac{ \sqrt{5}  +  \sqrt{2} }{ \sqrt{5}  -   \sqrt{2}  }  \times  \frac{ \sqrt{5} +  \sqrt{2}  }{ \sqrt{5} +  \sqrt{2}  }  \\  \\  \frac{( \sqrt{5} +  \sqrt{2} ) ^{2}  }{ { \sqrt{5} }^{2} -  \sqrt{2}  {}^{2}  }  \\  \\  \frac{ \sqrt{5} {}^{2}  +  \sqrt{2}   {}^{2} + 2 \times  \sqrt{5}  \times  \sqrt{2}  }{5 - 2}  \\  \\  \frac{5 + 2 + 2 \sqrt{10} }{3}  \\  \\  \frac{7 + 2 \sqrt{10} }{3}

y =  \frac{7 + 2 \sqrt{10} }{3}

We have to Find

 {x}^{2}  + xy +  {y}^{2}  \\  \\ ( \frac{7 - 2 \sqrt{10} }{3} ) ^{2}  + ( \frac{7 - 2 \sqrt{10} }{3} )( \frac{7 + 2 \sqrt{10} }{3} ) + ( \frac{7  + 2 \sqrt{10} }{3} ) {}^{2}  \\  \\ ( \frac{49  + 40 - 28 \sqrt{10} }{9} ) + (\frac{7  }{3}) {}^{2}  -  (\frac{2 \sqrt{10} }{3} ) {}^{2}  +  \frac{49 + 40 + 28 \sqrt{10} }{9}  \\  \\  \frac{89 - 28 \sqrt{10} }{9}  +  \frac{9}{9}  +  \frac{89 + 28 \sqrt{10} }{9}  \\  \\  \frac{89 - 28 \sqrt{10} + 9 + 89 + 28 \sqrt{10}  }{9}  \\  \\  \frac{89 + 9 + 89}{9}  \\  \\  \frac{187}{9}

\boxed{\mathbf{\huge{Answer=\frac{187}{9}}}}


pratyush4211: is it right
venkateshprasad24820: what
pratyush4211: Answer?
venkateshprasad24820: Ya absolutely
Similar questions