Math, asked by prashant7057, 11 months ago

plz answer fast plz find the answer fast plz send me your ans​

Attachments:

Answers

Answered by Anonymous
5

❏ Used Formula:-

From The index formula

(1) \sf\longrightarrow \frac{X{}^{m}}{X{}^{n}}=X{}^{m-n}\:or\:=\frac{1}{X{}^{n-m}}

(2) \sf\longrightarrow X{}^{m}\times X{}^{n}=X{}^{m+n}

(3) \sf\longrightarrow X{}^{m}\times Y{}^{m}={XY}^{m}

(4) \sf\longrightarrow \frac{X{}^{m}}{Y{}^{m}}=(\frac{X}{Y}){}^{m}

━━━━━━━━━━━━━━━━━━━━━━━

❏ Solution:-

Q) Simplify:-

\sf\longrightarrow\frac{16\times 2{}^{n+1}-4\times 2{}^{n}}{16\times 2{}^{n+2}-2\times 2{}^{n+2}}=?

Ans)

\sf\longrightarrow\frac{16\times 2{}^{n+1}-4\times 2{}^{n}}{16\times 2{}^{n+2}-2\times 2{}^{n+2}}

\sf\longrightarrow\frac{2{}^{4}\times 2{}^{n+1}-2{}^{2}\times 2{}^{n}}{2{}^{4}\times 2{}^{n+2}-2\times 2{}^{n+2}}

\sf\longrightarrow\frac{ 2{}^{n+1+4}-2{}^{n+2}}{ 2{}^{n+2+4}- 2{}^{n+2+1}}

\sf\longrightarrow\frac{ 2{}^{n+5}-2{}^{n+2}}{ 2{}^{n+6}- 2{}^{n+3}}

\sf\longrightarrow \frac{2 {}^{n}  \times 2 {}^{5} - 2 {}^{n}   \times 2 {}^{2} }{2 {}^{n}  \times 2 {}^{6}  - 2 {}^{n} \times 2 {}^{3}  }

\sf\longrightarrow \frac{ \cancel{2 {}^{n}}(2 {}^{5}  - 2 {}^{2})  }{ \cancel{2  {}^{n} }(2 {}^{6}  - 2 {}^{3}  )}

\sf\longrightarrow \frac{ (2 {}^{3 + 2} - 2 {}^{2})  }{(2 {}^{3 + 3}  - 2 {}^{3}) }

\sf\longrightarrow  \frac{(2 {}^{3} \times 2 {}^{2}  - 2 {}^{2})  }{(2 {}^{3} \times 2 {}^{3}  - 2 {}^{3})  }

\sf\longrightarrow  \frac{2 {}^{2} \cancel{(2 {}^{3}  - 1)} }{2 {}^{3}  \cancel{(2 {}^{3} - 1)} }

\sf\longrightarrow  \frac{2 {}^{2} }{2 {}^{3} }

\sf\longrightarrow  \frac{1}{2 {}^{3-2} }

\sf\longrightarrow  \frac{1}{2 {}^{1} }

\sf\longrightarrow\boxed{ \large{\red{ \frac{1}{2}}} }

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

#answerwithquality & #BAL

Similar questions