Math, asked by AADHESH, 11 months ago

plz answer faster
20 points​

Attachments:

Answers

Answered by Anonymous
10

SOLUTION

Given,

(sin \theta + sec \theta) {}^{2}  + (cos \theta + cosec \theta) {}^{2} \\  =  &gt;  (sin \theta +  \frac{1}{cos \theta} ) {}^{2}  + (cos \theta +  \frac{1}{sin \theta} ) {}^{2}  \\    \\ =  &gt;  {sin}^{2}  \theta +  \frac{1}{ {cos}^{2} \theta }  +  \frac{2sin \theta}{cos \theta}  +  {cos}^{2}  \theta +  \frac{1}{ {sin}^{2} \theta }  +  \frac{2cos \theta}{sin \theta}  \\  \\  =  &gt; ( {sin}^{2}  \theta +  {cos}^{2}  \theta) + ( \frac{1}{ {cos}^{2} \theta}  +  \frac{1}{ {sin}^{2} \theta } ) + 2( \frac{sin \theta}{cos \theta}  +  \frac{co s \theta}{si n \theta} ) \\  \\  =  &gt; 1 + ( \frac{ {sin}^{2}  \theta +  {cos}^{2} \theta }{ {sin}^{2}  \theta. {cos}^{2} \theta } ) + 2( \frac{ {sin}^{2} \theta +  {cos}^{2}  \theta }{sin \theta.cos \theta} ) \\  \\  =  &gt; 1 +  \frac{1}{ {sin}^{2}  \theta. {cos}^{2} \theta }  + 2( \frac{1}{sin \theta.cos \theta} ) \\  \\  =  &gt; (1 +  \frac{1}{sin \theta.cos \theta} ) {}^{2}  \\  \\  =  &gt; (1 + sec \theta.cosec \theta) {}^{2}  \:  \:  \:  \:  \: </u><u>[</u><u>Pr</u><u>oved</u><u>]</u><u>

hope it helps ☺️

Similar questions