Math, asked by mayam23, 1 year ago

plz answer it.
simplify it.​

Attachments:

Answers

Answered by prashantkanchkatle78
0

Answer:

Step-by-step explanation:

Attachments:
Answered by sivaprasath
0

Answer:

\frac{42}{11}

Step-by-step explanation:

Given :

To find the value of,

\frac{4 + \sqrt{5} }{4-\sqrt{5} } + \frac{4 - \sqrt{5} }{4+\sqrt{5} }

Solution :

By cross-multiplication,

\frac{4 + \sqrt{5} }{4-\sqrt{5} } + \frac{4 - \sqrt{5} }{4+\sqrt{5} }

\frac{(4+\sqrt{5})(4+\sqrt{5}) + (4-\sqrt{5})(4-\sqrt{5})}{(4+\sqrt{5})(4-\sqrt{5})}

By breaking down processes ,

In numerator,

(4+\sqrt{5})(4+\sqrt{5}) = 16 + 5 + 8\sqrt{5}

(4-\sqrt{5})(4-\sqrt{5}) = 16 + 5 - 8\sqrt{5}

(4+\sqrt{5})(4+\sqrt{5}) + (4-\sqrt{5})(4-\sqrt{5}) = 16 + 5 + 8\sqrt{5} + 16 + 5 - 8\sqrt{5} = 42 + 8\sqrt{5} - 8\sqrt{5} = 42

In denominator,

(4+\sqrt{5})(4-\sqrt{5}) = 16 - 5 = 11

Hence,

\frac{(4+\sqrt{5})(4+\sqrt{5}) + (4-\sqrt{5})(4-\sqrt{5})}{(4+\sqrt{5})(4-\sqrt{5})}= \frac{42}{11}

\frac{4 + \sqrt{5} }{4-\sqrt{5} } + \frac{4 - \sqrt{5} }{4+\sqrt{5} } =\frac{42}{11}

Similar questions