Math, asked by Anonymous, 1 month ago

plz answer me fast .​

Attachments:

Answers

Answered by Anonymous
47

{\underline{\boxed{\bf{Question \; 1 :}}}}

  • What is the additive inverse of

\bigstar{\underline{\boxed{\tt{ \dfrac{5}{-11} }}}}

Solution:

We know that, when a fraction is in the form \tt \dfrac{\; \; a}{- b} its additive inverse will be in the form \tt \dfrac{a}{ b}, So the additive inverse of 5/-11 will be,

\dashrightarrow \tt \dfrac{5}{11}

  • Henceforth option c is correct

{\underline{\boxed{\bf{Question \; 2 :}}}}

  • The product of

\bigstar{\underline{\boxed{\tt{ \dfrac{15}{19}\; and \dfrac{-19}{\;\;15} }}}}

Solution:

\dashrightarrow \tt \dfrac{15}{19} \times \dfrac{-19}{\;\;15}

\dashrightarrow \tt \dfrac{-285}{\;\;285}

\dashrightarrow {\underline{\boxed{\tt{ - 1}}}\star}

  • Henceforth option c is correct

{\underline{\boxed{\bf{Question \; 3 :}}}}

  • What is the absolute value of

\bigstar{\underline{\boxed{\tt{| 20 \times ( - 10) | }}}}

Solution:

\dashrightarrow \tt | 20\times (-10)|

\dashrightarrow \tt | - 200 |

\dashrightarrow {\underline{\boxed{\tt{ 200}}}\star}

  • Henceforth option b is correct

{\underline{\boxed{\bf{Question \; 4 :}}}}

  • What is the reciprocal of

\bigstar{\underline{\boxed{\tt{\bigg(\dfrac{-1}{\;\;9} \bigg)^4}}}}

Solution:

The reciprocal of a fraction is the form a/b ^ n will be b/a ^ n, So the reciprocal of the fraction is

\dashrightarrow \tt \bigg(\dfrac{\;\;9}{-1} \bigg)^4

  • henceforth option d is correct

{\underline{\boxed{\bf{Question \; 5 :}}}}

  • Solve the following

\bigstar{\underline{\boxed{\tt{\Bigg(\bigg(\dfrac{6}{7} \bigg) ^2\Bigg)^4}}}}

Solution:

Using the law of exponent which says( ( a/b) ^ n) ^ m is (a/b)^ n × n

\dashrightarrow \tt \Bigg(\bigg(\dfrac{6}{7} \bigg) ^2\Bigg)^4

\dashrightarrow \tt \bigg( \dfrac{6}{7} \bigg)^{8}

  • Henceforth option b is correct

{\underline{\boxed{\bf{Question \; 6 :}}}}

  • Simplify

\bigstar{\underline{\boxed{\tt{\bigg( 3^{-1}+ 4^{-1} \bigg)^{-1}}}}}

Solution:

\dashrightarrow \tt \bigg( 3 ^{-1} + 4\bigg)^1

\dashrightarrow \tt \bigg( - 3 + 4 \bigg)^1

\dashrightarrow\tt (1)^1

\dashrightarrow \tt {\underline{\boxed{\tt{ 1}}}}

  • Henceforth option b is correct

{\underline{\boxed{\bf{Question \; 7 :}}}}

  • Evaluate the following

\bigstar{\underline{\boxed{\sf{\dfrac{91x^{2} y^3 z^4 }{13xyz^3\;\;\;} }}}}

\bigstar{\underline{\boxed{\tt{\dfrac{36\times 6x^{-2}}{6^{-2}\times 12x{-4}}}}}}

Solution:

  • Part - A

\dashrightarrow \sf \dfrac{91x^{2} y^3 z^4 }{13xyz^3\;\;\;}

\dashrightarrow \sf \dfrac{7xy^2 z }{1}

\dashrightarrow \sf 7xy^2z

  • Part - B

\dashrightarrow \sf \dfrac{36\times 6x ^{-2}}{6^{-2} \times 12x^{-4}}

\dashrightarrow \sf \dfrac{1}{2x^{-2}}

\dashrightarrow \sf 2x^{2}

{\underline{\boxed{\bf{Question \; 8 :}}}}

  • find 3 rational numbers between

\bigstar{\underline{\boxed{\tt{ \dfrac{1}{3}\; and \dfrac{1}{2} }}}}

Solution:

\dashrightarrow \tt \dfrac{9}{12}

\dashrightarrow \tt \dfrac{10}{12}

\dashrightarrow \tt \dfrac{11}{12}

{\underline{\boxed{\bf{Question \; 9 :}}}}

  • Find the value of x

\bigstar{\underline{\boxed{\tt{ 8^x = 512 }}}}

\bigstar{\underline{\boxed{\tt{ 3^{2x} \div 3^{-10} = 3^{24} }}}}

Solution:

  • Part - A

\dashrightarrow \tt 8^x = 512

\dashrightarrow \tt 8^x = 8^3

\dashrightarrow \tt x = 3

  • Part - B

\dashrightarrow \tt 3^{2x} = 3^{24} \times 3^{10}

\dashrightarrow \tt 3^{2x} = 3^{34}

\dashrightarrow \tt x = 34 \div 2

\dashrightarrow \tt  x = 17

{\underline{\boxed{\bf{Question \; 10 :}}}}

  • Write in scientific notation

Solution:

  • Part - A

\dashrightarrow \tt 45 \times 10^{-6}

  • Part - B

\dashrightarrow \tt 727 \times 10^{4}

{\underline{\boxed{\bf{Question \; 11 :}}}}

  • Let's find the sum of

\dashrightarrow \tt \dfrac{6}{15} - \dfrac{9}{30}

\dashrightarrow \tt\dfrac{12}{30} -  \dfrac{9}{30}

\dashrightarrow \tt \dfrac{3}{30}

\dashrightarrow \tt \dfrac{1}{10}

  • And then the sum of

\dashrightarrow \tt \dfrac{3}{10} - \dfrac{5}{40}

\dashrightarrow \tt \dfrac{12}{40} - \dfrac{5}{40}

\dashrightarrow \tt \dfrac{7}{40}

  • Let's subtract them now

\dashrightarrow \tt \dfrac{3}{10} - \dfrac{7}{40}

\dashrightarrow \tt \dfrac{12 - 7}{40}

\dashrightarrow \tt \dfrac{3}{40}

{\underline{\boxed{\bf{Question \; 12 :}}}}

  • Write the following in usual form

\bigstar{\underline{\boxed{\tt{15 \times 10^{-5}}}}}

\bigstar{\underline{\boxed{\tt{0.8875 \times 10^{-5}}}}}

Solution:

  • Part - A

\dashrightarrow \tt 0.00015

  • Part - B

\dashrightarrow \tt 88750

  • Hence solved.!!!
Similar questions