Math, asked by parthgangwal, 1 year ago

plz answer me this question...

Attachments:

Answers

Answered by Anonymous
20

\underline{\underline{\mathfrak{\Large{Solution : }}}}



<br />\underline{\textsf{Given,}} \\ \\ \sf \implies \dfrac{x}{a} sin \: \theta \: - \: \dfrac{y}{b}cos \: \theta \: = \: 1 \\ \\ \textsf{Squaring both sides ,} \\ \\ \\ \sf \implies \left ( \dfrac{x}{a} sin \: \theta \: - \: \dfrac{y}{b}cos \: \theta \right)^2 \: = \: 1^2  \\  \\  \\  \sf \implies \left( \dfrac{x}{a} sin \:  \theta \right)^{2}  \:  +  \:  \left( \dfrac{y}{b} cos \:  \theta \right)^{2}  \:  -  \: 2 \:  \dfrac{x}{a} sin \:  \theta \:  \times  \:  \dfrac{y}{b} cos \:  \theta \:    =  \: 1  \\  \\  \\  \sf \implies \dfrac{ {x}^{2} }{ {a}^{2} }  {sin}^{2}  \theta \:  +  \:  \dfrac{ {y}^{2} }{ {b}^{2} }  {cos}^{2}  \theta\:  \:   - \:  \dfrac{2xy}{ab} sin  \:  \theta \: cos \:  \theta \:  =  \: 1 \qquad...(1)




\underline{\textsf{And,}} \\ \\ \sf \implies \dfrac{x}{a} cos \: \theta \: + \: \dfrac{y}{b}sin \: \theta \: = \: 1 \\ \\ \textsf{Squaring both sides ,} \\ \\ \\ \sf \implies \left ( \dfrac{x}{a} cos \: \theta \: + \: \dfrac{y}{b}sin \: \theta \right)^2 \: = \: 1^2  \\  \\  \\  \sf \implies \left( \dfrac{x}{a} cos \:  \theta \right)^{2}  \:  +  \:  \left( \dfrac{y}{b} sin \:  \theta \right)^{2}  \:  + \: 2 \:  \dfrac{x}{a} cos \:  \theta \:  \times  \:  \dfrac{y}{b} sin\:  \theta \:    =  \: 1  \\  \\   \\  \sf \implies \dfrac{ {x}^{2} }{ {a}^{2} }  {cos}^{2}  \theta \:  +  \:  \dfrac{ {y}^{2} }{ {b}^{2} }  {sin}^{2}  \theta\:  \:  +  \:  \dfrac{2xy}{ab} sin  \:  \theta \: cos \:  \theta \:  =  \: 1 \qquad...(2)





\underline{\textsf{Add both the equations ,}} \\ \\  \\  \sf \implies \dfrac{ {x}^{2} }{ {a}^{2} }  {sin}^{2}  \theta \:  +  \:  \dfrac{ {y}^{2} }{ {b}^{2} }  {cos}^{2}  \theta\:  \:   -  \:  \cancel{\:  \dfrac{2xy}{ab} sin  \:  \theta \: cos \:  \theta \:  } \: +  \: \dfrac{ {x}^{2} }{ {a}^{2} }  {cos}^{2}  \theta \:  +  \:  \dfrac{ {y}^{2} }{ {b}^{2} }  {sin}^{2}  \theta\:  \:  +    \: \cancel{\:  \dfrac{2xy}{ab} sin  \:  \theta \: cos \:  \theta \: } \:  =  \: 2 \\  \\  \\  \sf \implies\dfrac{ {x}^{2} }{ {a}^{2} }  {sin}^{2}  \theta \:  +  \: \dfrac{ {x}^{2} }{ {a}^{2} }  {cos}^{2}  \theta \:  +  \: \dfrac{ {y}^{2} }{ {b}^{2} }  {cos}^{2}  \theta \:  +  \: \dfrac{ {y}^{2} }{ {b}^{2} }  {sin}^{2} \:  =  \: 2 \\  \\  \\  \sf \implies \dfrac{ {x}^{2} }{ {a}^{2} } ( {sin}^{2}  \theta \:  +  \:  {cos}^{2}  \theta) \:  +  \:  \dfrac{ {y}^{2} }{ {b}^{2} }  ( {sin}^{2}  \theta \:  +  \:  {cos}^{2}  \theta)  \:  =  \: 2 \\  \\  \\  \sf \implies \dfrac{ {x}^{2} }{ {a}^{2} }  \:  \times  \: 1 \:  +  \:   \dfrac{ {y}^{2} }{ {b}^{2} } \:  \times  \: 1  \:  =  \: 2 \\  \\  \\   \:  \:  \sf \therefore \:  \:  \dfrac{ {x}^{2} }{ {a}^{2} }  \:  +  \:  \dfrac{ {y}^{2} }{ {b}^{2} }  \:  =  \: 2 \\  \\  \\  \\ \underline{\mathsf{\Large{Proved !! }}}



\underline{\textsf{Trigonometric Identity Used : }} \\ \\ \sf \implies sin^2 \theta \: + \: cos^2 \theta \: = \: 1 \\ \\ \underline{\textsf{Algebraic Identity Used : }} \\ \\ \sf \implies (a \: - \: b)^2 \: = \: a^2 \: + \: b^2 \: - \: 2ab \\ \\ \sf \implies (a \: + \: b)^2 \: = \: a^2 \: + \: b^2 \: + \: 2ab



parthgangwal: oh,, thnx so much
Answered by Anonymous
3

\huge{\underline{\underline{.........Answer}}}

Attachments:
Similar questions