Math, asked by rakeshkuldeep03, 28 days ago

plz answer my question ​

Attachments:

Answers

Answered by Mathkeeper
0

Step-by-step explanation:

 \tt{Let\,\,the\,\,coordinates\,\,of\,\,C\,\,be\,(h,k)}

Now,

 \sf{Coordintes \:  \: of \:  \: centroid \: \:  be \:  \: (  \alpha,\beta )}

So,

 \sf{  \:  \:  \:  \:  \alpha  =  \dfrac{2 + ( - 2) + h }{3}} \\  \sf{    \beta  =   \dfrac{- 3 + 1 + k}{3} }

 \implies \sf{  \alpha  =  \dfrac{ h }{3}} \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf{ \beta  =   \dfrac{- 2 + k}{3} }

Now, (\alpha,\beta) lie on the line 2x+3y=1

So,

 \sf{ 2 \bigg( \dfrac{h}{3} \bigg)  + 3 \bigg( \dfrac{ - 2 + k}{3}  \bigg)} = 1

 \sf{ \implies 2(h )  + 3 ( - 2 + k) = 3}

 \sf{ \implies 2h    - 6+ 3k= 3}

 \sf{ \implies 2h    + 3k= 3 + 6}

 \sf{ \implies 2h    + 3k= 9}

 \rm{  \purple{Hence ,required \:  \: locus \:  \:  \colon \:  \:  \color{orange}2x + 3y = 9  } }

Similar questions