Math, asked by prachi782214, 2 months ago

plz answer plz answer​

Attachments:

Answers

Answered by Anonymous
23

\large\sf\underline{Question\::}

  • \sf\:2(y+\frac{3}{2})=4.5

‎ Calculate the value of y.

Options :-

  • 0.25

  • 0.75 \color{blue}{\checkmark}

  • 0.50

  • 2

\large\sf\underline{Answer\::}

  • The value of y is \large{\mathfrak{0.75}}.

=======================

\large\bf\underline{Solution\::}

\sf\:2(y+\frac{3}{2})=4.5

  • LCM of 1 and 2 = 2

\sf\implies\:\:2[\frac{(2 \times y) + (1 \times 3)}{2}]=4.5

\sf\implies\:\:2[\frac{2y + 3}{2}]=4.5

  • Multiplying the numbers

\sf\implies\:\:\frac{4y + 6}{2}=4.5

  • Cross multiplying

\sf\implies\:\:4y + 6=4.5 \times 2

\sf\implies\:\:4y + 6=9

  • Transposing +6 to RHS it becomes -6

\sf\implies\:\:4y= 9-6

\sf\implies\:\:4y= 3

  • Transposing 4 to RHS it goes to the denominator

\sf\implies\:\:y=\frac{ 3}{4}

\small{\underline{\boxed{\mathrm\red{\implies\:y\:=\:0.75}}}}

=======================‎

Verifying :-

Let's check if we got correct answer.

For checking we would substitute the value of y in the expression and see if we get LHS = RHS. If LHS = RHS our answers would be correct.

\sf\:2[y+\frac{3}{2}]=4.5

  • Substituting y as 0.75

\sf\to\:2[0.75+\frac{3}{2}]=4.5

\sf\to\:2[\frac{(2 \times 0.75) + (1 \times 3)}{2}]=4.5

\sf\to\:2[\frac{1.5+ 3}{2}]=4.5

\sf\to\:2[\frac{1.5+ 3}{2}]=4.5

\sf\to\:2[\frac{4.5}{2}]=4.5

\sf\to\:\frac{9}{2}=4.5

\sf\to\:4.5=4.5

\bf\to\:LHS=RHS

\small\fbox\green{Hence~Verified~!! }

=======================

\dag\:\underline{\sf So\:the\:correct\:option\:is\:(b)\:i.e.,\:0.75}.

!! Hope it helps !!‎

Answered by sangameshsuntyan
0

Answer:

\large\sf\underline{Question\::}

Question:

\sf\:2(y+\frac{3}{2})=4.52(y+

2

3

)=4.5

‎ Calculate the value of y.

‎ Options :-

0.25

0.75 \color{blue}{\checkmark}✓

0.50

2

\large\sf\underline{Answer\::}

Answer:

The value of y is \large{\mathfrak{0.75}}0.75 .

=======================

\large\bf\underline{Solution\::}

Solution:

\sf\:2(y+\frac{3}{2})=4.52(y+

2

3

)=4.5

LCM of 1 and 2 = 2

\sf\implies\:\:2[\frac{(2 \times y) + (1 \times 3)}{2}]=4.5⟹2[

2

(2×y)+(1×3)

]=4.5

\sf\implies\:\:2[\frac{2y + 3}{2}]=4.5⟹2[

2

2y+3

]=4.5

Multiplying the numbers

\sf\implies\:\:\frac{4y + 6}{2}=4.5⟹

2

4y+6

=4.5

Cross multiplying

\sf\implies\:\:4y + 6=4.5 \times 2⟹4y+6=4.5×2

\sf\implies\:\:4y + 6=9⟹4y+6=9

Transposing +6 to RHS it becomes -6

\sf\implies\:\:4y= 9-6⟹4y=9−6

\sf\implies\:\:4y= 3⟹4y=3

Transposing 4 to RHS it goes to the denominator

\sf\implies\:\:y=\frac{ 3}{4}⟹y=

4

3

\small{\underline{\boxed{\mathrm\red{\implies\:y\:=\:0.75}}}}

⟹y=0.75

=======================‎

Verifying :-

Let's check if we got correct answer.

For checking we would substitute the value of y in the expression and see if we get LHS = RHS. If LHS = RHS our answers would be correct.

\sf\:2[y+\frac{3}{2}]=4.52[y+

2

3

]=4.5

Substituting y as 0.75

\sf\to\:2[0.75+\frac{3}{2}]=4.5→2[0.75+

2

3

]=4.5

\sf\to\:2[\frac{(2 \times 0.75) + (1 \times 3)}{2}]=4.5→2[

2

(2×0.75)+(1×3)

]=4.5

\sf\to\:2[\frac{1.5+ 3}{2}]=4.5→2[

2

1.5+3

]=4.5

\sf\to\:2[\frac{1.5+ 3}{2}]=4.5→2[

2

1.5+3

]=4.5

\sf\to\:2[\frac{4.5}{2}]=4.5→2[

2

4.5

]=4.5

\sf\to\:\frac{9}{2}=4.5→

2

9

=4.5

\sf\to\:4.5=4.5→4.5=4.5

\bf\to\:LHS=RHS→LHS=RHS

\small\fbox\green{Hence~Verified~!! }

Hence Verified !!

=======================

\dag\:\underline{\sf So\:the\:correct\:option\:is\:(b)\:i.e.,\:0.75}†

Sothecorrectoptionis(b)i.e.,0.75

.

!! Hope it helps !!‎

Similar questions