Math, asked by Anonymous, 4 months ago

plz answer the above​

Attachments:

Answers

Answered by mittalsapna19
7

Answer:

b) 3:1

Step-by-step explanation:

Volume of cylinder = pi r^2h

Volume of cone = 1/3 pi r^2 h

Ratio = ( pi r^2h) / (1/3 pi r^2 h)

= 1/1/3 = 3/1

3:1

Answered by Anonymous
22

\underline{\underline{\sf \qquad Given :\qquad}} \\

  • A cylinder and a cone are of the same base radius and of same height.

\underline{\underline{\sf \qquad To \:  Find:\qquad}} \\

  • The ratio of the volume of cylinder to that of the cone = ?

\underline{\underline{\sf \qquad Solution:\qquad}} \\

\bullet\:\textsf{Volume of cone = \textbf{$\dfrac{ \text1}{ \text3}$$\pi$r$^ \text2$h}} \\

\bullet\:\textsf{Volume of cylinder = \textbf{$\pi$r$^ \text2$h}} \\

\frak {\pink{Where}}\begin{cases} \sf{\red{r  \: is \:  the  \: base  \: radius}}\\ \sf{\orange{h \:  is \:  the  \: Height}}\end{cases} \\

\underline{\boldsymbol{According\: to \:the\: Question\:now :}} \\

:\implies\sf Required \:  ratio = \dfrac{Volume \:  of  \: cylinder}{Volume \:  of \:  cone} \\  \\  \\

:\implies\sf Required \:  ratio = \dfrac{\pi {r}^{2}h }{ \dfrac{1}{3} \pi {r}^{2}h} \\  \\  \\

:\implies\sf Required \:  ratio = \dfrac{1}{ \dfrac{1}{3} } \\  \\  \\

:\implies\sf Required \:  ratio = \dfrac{1 \times 3}{ 1 } \\  \\  \\

:\implies \underline{ \boxed{\sf Required \:  ratio = \dfrac{3}{ 1 } }}\\  \\  \\

\therefore\:\underline{\textsf{The ratio of the volume of cylinder to that of the cone is \textbf{3 : 1}}}.


IIDarvinceII: Gud biro!
Anonymous: Thanks
Anonymous: Thanks :)
MysterySoul: Helpful! :-)
Anonymous: Nice :)
Similar questions