Math, asked by akifsiddique778, 10 months ago

plz answer the question.​

Attachments:

Answers

Answered by vishal4172
1

(sin + cos)( cot + tan )

( sin + cos) ( cos / sin + sin / cos)

( sin + cos ) ( cos^2 + sin^2/ cos*sin)

(sin + cos ) ( 1/ sin cos)

now ( sin + cos)

----------------

sin* cos

giving denominator to both

sin + cos

------ ------

sin*cos sin*cos

1 + 1

----- ---------

cos. sin

= sec + cosec

as all are in plus

= cosec + sec

Step-by-step explanation:

imp things

lcm

sin^2 + cos ^2 = 1

giving denominator

Answered by ishika7968
0

 \huge \pink {Hello\: Mate}

Answer:

 \Large{L.H.S}

 =>(Sinθ-Cosθ) (Cotθ+Tanθ)

=> (Sinθ-Cosθ) (\frac{Cosθ}{Sinθ} +\frac{Sinθ}{Cosθ})

 =>(Sinθ-Cosθ) (\frac{ {Cosθ}^{2}+ {Sinθ}^{2}} {SinθCosθ})

 =>(Sinθ-Cosθ) (\frac{1} {SinθCosθ})

 =>\frac{Sinθ-Cosθ}{SinθCosθ}

 =>\frac{Sinθ-Cosθ}{SinθCosθ}

 =>\frac{Sinθ}{SinθCosθ} - \frac{Cosθ}{SinθCosθ}

 =>\frac{1}{Cosθ} - \frac{1} {Sinθ}

 =>\frac{1}{Cosθ} - \frac{1} {Sinθ}

 =>Secθ - Cosecθ

 \Large {R.H.S}

=> Secθ - Cosecθ

 Hence\: L.H.S=R.H.S

Hope it helps úh

Mark my answer as BRAINLIEST ✌️

Similar questions