Math, asked by mateen786786, 11 months ago

plz answer the question correctly​

Attachments:

Answers

Answered by Rohit18Bhadauria
5

Given:

\bf{\dfrac{sec15^{\circ}}{cosec75^{\circ}}+\dfrac{sin72^{\circ}}{cos18^{\circ}}-\dfrac{tan33^{\circ}}{cot57^{\circ}}}

☯To Find:

  • Value of above expression

Solution:

We know that,

  • cosec x= sec(90°-x)
  • cos x= sin(90°-x)
  • cot x= tan(90°-x)

Now,

\longrightarrow\sf{\dfrac{sec15^{\circ}}{cosec75^{\circ}}+\dfrac{sin72^{\circ}}{cos18^{\circ}}-\dfrac{tan33^{\circ}}{cot57^{\circ}}}

\longrightarrow\sf{\dfrac{sec15^{\circ}}{sec(90^{\circ}-75^{\circ})}+\dfrac{sin72^{\circ}}{sin(90^{\circ}-18^{\circ})}-\dfrac{tan33^{\circ}}{tan(90^{\circ}-57^{\circ})}}

\longrightarrow\sf{\dfrac{sec15^{\circ}}{sec15^{\circ}}+\dfrac{sin72^{\circ}}{sin72^{\circ}}-\dfrac{tan33^{\circ}}{tan33^{\circ}}}

\longrightarrow\sf{1+1-1}

\longrightarrow\sf{2-1}

\longrightarrow\sf\pink{1}

Hence, the required value is 1.

Some Other Trigonometric Identities:

  • sin²θ + cos²θ= 1
  • 1 + tan²θ= sec²θ
  • 1 + cot²θ= cosec²θ
  • \sf{sin\theta=\dfrac{1}{cosec\theta}}
  • \sf{tan\theta=\dfrac{1}{cot\theta}}
  • \sf{cos\theta=\dfrac{1}{sec\theta}}
  • \sf{tan\theta=\dfrac{sin\theta}{cos\theta}}
  • \sf{cot\theta=\dfrac{cos\theta}{sin\theta}}

Answered by tahseen619
4

Answer:

1

Step-by-step explanation:

Solution:

 \frac{ \sec  15}{ \cosec75 }  +  \frac{ \sin 72}{ \cos18}  -  \frac{ \tan 33}{ \cot57 }  \\  \\  \frac{ \sec  (90 - 75)}{ \cosec75 }  +  \frac{ \sin (90 - 18)}{ \cos18}  -  \frac{ \tan (90 - 57)}{ \cot57 } \\  \\  \frac{ \ \cosec 75}{ \cosec75 }  +  \frac{ \cos 18}{ \cos18}  -  \frac{  \cot57}{ \cot57 } \\  \\ 1 + 1 - 1 \\  \\ 1

Hence the required answer is 1.

Using Identity

sec(90 - ø) = cosec∅

sin(90 - ø) = cosø

tan(90 - ø) = cotø

Similar questions