Math, asked by mateen786786, 11 months ago

plz answer the question correctly​

Attachments:

Answers

Answered by adityayadav06050
1

dividing as given

1/y + 1/x = 2 -----(1)

1/y - 1/x = 6

let assum 1/x = a & 1/y = b

a + b = 2

-a + b = 6

adding both

2b = 8

b = 4

so a = -2

as we assume 1/x = a & 1/y = b

so

x = -1/2 and y = 1/4

Answered by tahseen619
3

Answer:

 \dfrac{1}{4}

Step-by-step explanation:

Given:

 \frac{x + y}{xy}  = 2 \\  \\  \frac{x - y}{xy}  = 6

To find:

Value of y

Solution:

 \frac{x + y}{xy}  = 2 \\  \\  \frac{x}{xy}  +  \frac{y}{xy}  = 2 \\  \\  \frac{1}{x}  +  \frac{1}{y}  = 2 \:  \:  \:  \:  \:....... (i)

 \frac{x - y}{xy}  = 6 \\  \\  \frac{x}{xy}  -  \frac{y}{xy}  = 6 \\  \\  \frac{1}{y}  -  \frac{1}{x}  = 6 \:  \:  \:  \: ........(ii)

Adding (i) and (ii) , I get ....

 \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{y}  -  \frac{1}{x}  = 6 + 2 \\  \\  \cancel{ \frac{1}{x} } +  \frac{1 + 1}{y}  -    \cancel\frac{ 1}{x}  = 8 \\  \\  \frac{2}{y}  = 8 \\  \\  \frac{1}{y}  = 4 \\  \\ y =  \frac{1}{4}

Hence the required value of y is 1/4 .

Similar questions