Math, asked by dhruvkohli7, 10 months ago

plz answer this question ​

Attachments:

Answers

Answered by Anonymous
8

\huge\tt{\red{\underline{Given:}}}

\dfrac{2sin^{2}63°+1+2sin^{2}27°}{3cos^{2}17°-2+3cos^{2}73°}

\huge\tt{\red{\underline{To\:\:Find:}}}

★It's simplified value .

\huge\tt{\red{\underline{Concept\:\:Used:}}}

★We would use some formulas related to trigonometry.

\huge\tt{\red{\underline{Answer:}}}

We have,

\implies\dfrac{2sin^{2}63°+1+2sin^{2}27°}{3cos^{2}17°-2+3cos^{2}73°}= y (say)

\implies \dfrac{2sin^{2}63°+2sin^{2}27°+1}{3cos^{2}17°+3cos^{2}73°-2}= y

\implies \dfrac{2sin^{2}63°+2sin^{2}(90°-63°) +1}{3cos^{2}17°+3cos^{2}(90°-17°) -2}=y

\implies \dfrac{2sin^{2}63°+2cos^{2}63°+1}{3cos^{2}17°+3sin^{2}17°-2}=y

\large\green{\boxed{sin(90-\theta) =cos\theta}}

\large\red{\boxed{cos(90-\theta) =sin\theta}}

\implies \dfrac{2(sin^{2}63°+cos^{2}63°)+1}{3(cos^{2}17°+sin^{2}17°)-2}=y

\implies \dfrac{2×1+1}{3×1-2}=y

\large\purple{\boxed{sin^{2}\theta+cos^{2}\theta=1}}

\implies y = \dfrac{2+1}{3-2}

\implies y =\dfrac{3}{1}

{\underline{\boxed{.°.\:\:y=3}}}

Therefore the required answer is 3 .

Attachments:
Answered by livinglegendstrom
0

Answer:

refer to the attachment please

Attachments:
Similar questions