Math, asked by iampinku02, 9 months ago

plz answer this question​

Attachments:

Answers

Answered by Anonymous
3

Answer:

Given

In ∆ ABC

  • right angled at C
  • tan A= 1 /√3

To find

  1. SinA.Cos B+ CosA.SinB
  2. 1+ tan²A = Sec²A

Solution

We know that ,

 \sf{ \to \: tanA =  \frac{1}{ \sqrt{3} } } \\  \\  \sf{ \to \: tanA = 30 \degree}

Now,

In an triangle the the sum of angles is 180°.

let us assume angle B as x°.

 \sf{ \to90 + 30 + x \degree = 180 \degree} \\    \sf{ \to120 \degree  + x= 180 \degree} \\   \sf { \to \: x = 60 \degree}

 \sf{\therefore \:  \angle \: c \: is \: 60 \degree}

Now subsitute the values

 \sf{Sin30 .Cos 60 + Cos30 .Sin60} \\  \\  \sf{ \to \:  \frac{1}{2}  \times \frac{1}{2}  +  \frac{ \sqrt{3} }{2} \times  \frac{ \sqrt{3} }{2}} \\  \\   \sf{ \to \:  \frac{1}{4}  +  \frac{3}{4}  =  \frac{4}{4}  = 1}

______________________

Q2

 \sf{tanA =  \frac{1}{ \sqrt{3}} }  \\  \\   \sf{ \to \: tanA =  \frac{perpendicular}{base} } \\  \\  \sf{so\: perpendicular = 1units} \\  \sf{base =  \sqrt{3} \:  units}

Apply phythagoras Theorem in ∆ ABC

 \sf{ \to \: AB²= AC²+ CB²} \\  \sf{ \to \: AB = 2units}

Now,

L.H.S

 \sf{1 +  {tan}^{2}A } \\  \sf{ \to \: 1 + ({ \frac{1}{ \sqrt{3} } })^{2}  } \\  \sf { \to1 +  \frac{1}{3}  =  \frac{4}{3} }

R.H.S

 \sf{secA =  \frac{h}{b} } \\  \sf{ \to \: secA =  \frac{2}{ \sqrt{3} } } \\  \\  \sf{ \to {sec}^{2} A =   { \frac{4}{3} }}

therefore LHS= RHS

hence proved

_________________________

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}

Similar questions