plz answer this question
Answers
Answer:
Given, ABCD is a parallelogram having ∠BAO = 35°, ∠DAO = 40° and ∠COD = 105°
Now, ∠COD = ∠AOB = 105° [vertically opposite angles]
In ΔAOB, by angle sum property of triangle,
⇒ ∠AOB + ∠OAB + ∠ABO = 180°
⇒ 105° + 35° + ∠ABO = 180°
⇒ ∠ABO = 40°
Again, adjacent angles of a parallelogram are supplementary.
⇒ ∠DAB + ∠ABC = 180°
⇒ ∠DAO + ∠OAB + ∠ABO + ∠CBO = 180°
⇒ 40° + 35° + 40° + ∠CBO = 180°
⇒ ∠CBO = ∠CBD = 180° - 115° = 65°
⇒ ∠CBD = 65°
In ΔABC, by angle sum property of triangle,
⇒ ∠CAB + ∠ABC + ∠ACB = 180°
⇒ 35° + ∠ABO + ∠CBO + ∠ACB = 180°
⇒ 35° + 40° + 65° + ∠ACB = 180°
⇒ ∠ACB = 180° - 140° = 40°
⇒ ∠ACB = 40°
Now, opposite angles of a parallelogram are equal
⇒ ∠A =∠C
⇒ ∠C = 75°
On applying angle sum property of triangle in BCD, we get
⇒ ∠C + ∠CBD + ∠CDB = 180°
⇒ 75° + 65° + ∠CDB = 180°
⇒ ∠CDB = 40°
or ∠ODC = 40°