Math, asked by Anonymous, 9 months ago

plz answer this question asap it is urgent​

Attachments:

Answers

Answered by shadowsabers03
3

For any whole number \sf{k,}

  • \sf{i^{4k+1}=i}
  • \sf{i^{4k+2}=i^2}
  • \sf{i^{4k+3}=i^3}
  • \sf{i^{4k+4}=i^4}

If we add these four numbers,

\longrightarrow\sf{i^{4k+1}+i^{4k+2}+i^{4k+3}+i^{4k+4}=i+i^2+i^3+i^4}

\longrightarrow\sf{i^{4k+1}+i^{4k+2}+i^{4k+3}+i^{4k+4}=i-1-i+1}

\longrightarrow\sf{i^{4k+1}+i^{4k+2}+i^{4k+3}+i^{4k+4}=0}

Replacing \sf{4k=n,}

\longrightarrow\sf{i^{n+1}+i^{n+2}+i^{n+3}+i^{n+4}=0}

That is, the sum of any four consecutive powers of \sf{i} is always zero.

Hence,

\begin{aligned}\longrightarrow\ \ &\sf{i^n+i^{n+1}+i^{n+2}+i^{n+3}+i^{n+4}+i^{n+5}+i^{n+6}+i^{n+7}}\\=\ \ &\sf{\left(i^n+i^{n+1}+i^{n+2}+i^{n+3}\right)+\left(i^{n+4}+i^{n+5}+i^{n+6}+i^{n+7}\right)}\\=\ \ &\sf{0+0}\\=\ \ &\sf{0}\end{aligned}

Hence Proved!

Answered by Tinajadav
0

Answer:

please but jo bhi ho assa mat karo yrr

Step-by-step explanation:

Hiii you are girl ya boy please tell me

Similar questions