Math, asked by Blesston, 1 year ago

Plz answer to the Above!!!

Attachments:

Answers

Answered by siddhartharao77
6

 Given : a = 1 - \sqrt{2}

 = > \frac{1}{a} = \frac{1}{1 - \sqrt{2}} * \frac{1 + \sqrt{2}}{1 + \sqrt{2}}

 = > \frac{1 + \sqrt{2}}{(1)^2 - (\sqrt{2})^2}

 = > \frac{1 + \sqrt{2}}{1 - 2}

 = > \frac{1 + \sqrt{2}}{-1}

 = > -(1 + \sqrt{2})

---------------------------------------------------------------------------------------------------------------

Now,

 = > (a - \frac{1}{a})^3 = (1 - \sqrt{2} + 1 + \sqrt{2})^3

 = > 2^3

 = > \boxed{8}}


Hope this helps!


Blesston: Thankyou so much for spending your time to ANSWER this question!!!!! : )
siddhartharao77: welcome!
Answered by Anonymous
5
 \bf \large \it{Hey \: User!!!}

given a = 1 - √2

 \bf \small \: therefore \: \frac{1}{a} = \frac{1}{1 - \sqrt{2} } \\ \bf \tiny by \: rationalising \: = > \frac{1}{1 - \sqrt{2} } \times \frac{1 + \sqrt{2} }{1 + \sqrt{2} }  \\ \bf \small = \frac{1 + \sqrt{2} }{(1 - \sqrt{2} )(1 + \sqrt{2}) } \\ \\ \bf \small \: = \frac{1 + \sqrt{2} }{ {1}^{2} - { (\sqrt{2}) }^{2} } \\ \\ \bf \small = \frac{1 + \sqrt{2} }{1 - 2} \\ \\ \bf \small = \frac{1 + \sqrt{2} }{ - 1} \\ \\ \bf \small \: = - 1 + \sqrt{2}

we have to find ( a - 1/a )³

 \bf = {(1 - \sqrt{2 } - ( - 1 + \sqrt{2}) }^{3} \\ \bf \: = {(1 - \sqrt{2} + 1 + \sqrt{2} ) }^{?} \\ \bf \: = {(2)}^{3} \\ \bf = 2 \times 2 \times \times 2 \\ \bf = 8

 \bf \large \it{Cheers!!!}
Similar questions