Math, asked by Harshitha5463, 5 months ago

plz answer to this question as soon as possible plz.......................​

Attachments:

Answers

Answered by shashikantameher54
2

Question:-

\cos ^ { 4 } \alpha + 2 \cos ^ { 2 } \alpha ( 1 - \frac { 1 } { \sec ^ { 2 } \alpha } ) = ( 1 - \sin ^ { 4 } \alpha )

Answer:-

LHS =  \: \cos ^ { 4 } \alpha + 2 \cos ^ { 2 } \alpha ( 1 - \frac { 1 } { \sec ^ { 2 } \alpha } ) = ( 1 - \sin ^ { 4 } \alpha ) \\  \\  =  cos {}^{4}  \alpha  + 2cos {}^{2}  \alpha (1 - cos {}^{2}  \alpha ) \\  \\  = cos {}^{4}  \alpha  + 2cos {}^{2}  \alpha  - 2cos {}^{4}  \alpha  \\  \\  = \:  \:  2cos {}^{2}  \alpha  - cos {}^{4}  \alpha  \\  \\  = cos {}^{2}  \alpha (2 - cos {}^{2}  \alpha ) \\  \\  = (1 - sin {}^{2}  \alpha )(2 - 1 + sin {}^{2} ) \\  \\  = (1 - sin {}^{2}  \alpha )(1 + sin {}^{2}  \alpha ) \\  \\  = 1 - sin {}^{4}  \alpha  = RHS

Similar questions