Math, asked by Priyanshu1920, 1 year ago

plz answer with full explanation....​

Attachments:

Answers

Answered by Anonymous
1

 \bold{ \large{ \underline{Formula }}}

  \large  \to \bold{\tan(a + b)  =  \frac{ \tan(a)  +  \tan(b) }{1 -  \tan(a) \:  \times  \:  \tan(b)  }  } \\  \\  \large \to  \bold{ \tan(a  -  b)  =  \frac{ \tan(a)   -  \tan(b) }{1  +   \tan(a) \:  \times  \:  \tan(b)  }  }

 \bold{  \large{ \underline{RHS \: } }}

 \large \to \bold{  { ( \: \frac{1 +  \tan(x) }{1 -  \tan(x) }  \: )}^{2}  } \:

 \bold{  \large{ \underline{LHS } }}</p><p> \:

 \large  \to\bold{  \frac{\tan( \frac{\pi}{4} + x ) }{ \tan( \frac{\pi}{4}  - x) }  }\\  \\   \large  \to \bold{\frac{ \frac{ \tan( \frac{\pi}{4} ) +  \tan(x)  }{1 -  \tan( \frac{\pi}{4}) \tan(x)   } } {  \frac{ \tan( \frac{\pi}{4} )-  \tan(x)   }{ 1 +  \tan( \frac{\pi}{4} ) \tan(x)  } }  } \\  \\ \large  \to  \bold{ \frac{ \frac{1 +  \tan(x) }{1 -  \tan(x) } }{ \frac{1 -  \tan(x) }{1 +  \tan(x) } } } \\  \\ \large   \to \bold{\frac{(1 +  \tan(x))(1 +  \tan(x) )}{(1  -   \tan(x))(1  -   \tan(x) )}}\\  \\  \large \to \bold{  { ( \: \frac{1 +  \tan(x) }{1 -  \tan(x) }  \: )}^{2}  }

 \bold{ \large{ \underline{ \underline{ \:  \: RHS  \: = \:  LHS \: , \:  Hence \:  Proved  \:  \:  \: }}}}

Answered by SweetPoison7
0

rhs = lhs

hence proved

thank you

Similar questions