Math, asked by vishnoip24, 11 months ago

plz.....anyone can solve this​

Attachments:

Answers

Answered by Mankuthemonkey01
10

Answer

7

Explanation

Given that

\sf a = \frac{3 + \sqrt{5}}{2}

So,

\sf \frac{1}{a} = \frac{2}{3 + \sqrt{5}}

Rationalize it by multiplying with (3 - √5) on both numerator and denominator

\sf \frac{1}{a} = \frac{2(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}

This becomes

\sf\frac{1}{a} = \frac{2(3-\sqrt{5})}{9-5}

\sf\frac{1}{a} = \frac{2(3-\sqrt{5})}{4}

\sf\frac{1}{a} = \frac{3 - \sqrt{5}}{2}

Now,

a² + 1/a² = (a + 1/a)² - 2a × 1/a

→ a² + 1/a² = (a + 1/a)² - 2

So, \sf a^2 + \frac{1}{a^2} = (\frac{3+\sqrt{5}}{2} + \frac{3-\sqrt{5}}{2})^2 - 2

\sf a^2 + \frac{1}{a^2} = (\frac{6}{2})^2 - 2

\sf a^2 + \frac{1}{a^2} = (3)^2 - 2

\sf a^2 + \frac{1}{a^2} = 7

Answered by ThinkingBoy
5

a = \frac{3+\sqrt{5} }{2}

2a = 3+\sqrt{5}

2a - 3 = \sqrt{5}

Squaring on both sides

(2a-3)^2 = 5\\4a^2+9-12a = 5\\4a^2 = 12a-4

a^2 = 3a-1

We need to find

a^2+\frac{1}{a^2}

Substitute the value of a²

a^2+\frac{1}{a^2}=3a-1+\frac{1}{3a-1}

            = \frac{(3a-1)^2+1}{3a-1}

            = \frac{9a^2-6a+1+1}{3a-1}

            = \frac{9(3a-1)-6a+2}{3a-1}

            = \frac{21a-7}{3a-1}

            = \frac{7(3a-1)}{3a-1}

            = 7

So the answer is 7

Similar questions