Math, asked by singh2004shravani, 1 month ago

plz do this fast
for 9th class students

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

Prove that

 \rm \: \dfrac{0.87 \times 0.87 \times 0.7 + 0.13 \times 0.13 \times 0.13}{0.87 \times 0.87 - 0.87 \times 0.13 + 0.13 \times 0.13}  = 1

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\: \: \dfrac{0.87 \times 0.87 \times 0.7 + 0.13 \times 0.13 \times 0.13}{0.87 \times 0.87 - 0.87 \times 0.13 + 0.13 \times 0.13}

We know,

 { \bf{ \underbrace{ \sf \: x \times x \times x \times  -  -  -  \times x} \:  =  {x}^{n} }} \\    \rm \: n \: times

So, using this identity, we get

\rm \:  =  \:  \: \dfrac{ {(0.87)}^{3} +  {(0.13)}^{3} }{ {(0.87)}^{2} - 0.87 \times 0.13 +  {(0.13)}^{2}  }

We know, that,

\boxed{ \bf{ \:  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2})}}

So, using this identity in numerator, we get

\rm \:  =  \:  \: \dfrac{ {(0.87}^{} +  {0.13)}^{} ({(0.87)}^{2} - 0.87 \times 0.13 +  {(0.13)}^{2})}{ {(0.87)}^{2} - 0.87 \times 0.13 +  {(0.13)}^{2}  }

\rm \:  =  \:  \: 0.87 + 0.13

\rm \:  =  \:  \: 1

Hence,

 \boxed{ \bf{ \: \rm \: \dfrac{0.87 \times 0.87 \times 0.7 + 0.13 \times 0.13 \times 0.13}{0.87 \times 0.87 - 0.87 \times 0.13 + 0.13 \times 0.13}  = 1}}

Short Cut trick :-

To solve such questions, use these Identities directly.

1.

\boxed{ \bf{ \: \dfrac{ {x}^{3}  +  {y}^{3} }{ {x}^{2} - xy +  {y}^{2}}  = x + y}}

So, using this identity,

\rm :\longmapsto\: \: \dfrac{0.87 \times 0.87 \times 0.7 + 0.13 \times 0.13 \times 0.13}{0.87 \times 0.87 - 0.87 \times 0.13 + 0.13 \times 0.13}

\rm \:  =  \:  \: 0.87 + 0.13

\rm \:  =  \:  \: 1

Additional Information :-

\boxed{ \bf{ \:  {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}

\boxed{ \bf{ \:  {(x  -  y)}^{2} =  {x}^{2} +  {y}^{2}  -  2xy}}

\boxed{ \bf{ \:  {(x  -  y)}^{3} =  {x}^{3}  -   {y}^{3}  -  3xy(x - y)}}

\boxed{ \bf{ \:  {(x   +  y)}^{3} =  {x}^{3}  +    {y}^{3}  + 3xy(x + y)}}

\boxed{ \bf{ \:  {x}^{4} -  {y}^{4} = (x - y)(x + y)( {x}^{2} +  {y}^{2})}}

Similar questions