Math, asked by adityavohra12, 1 month ago

plz do this will mark as brainliest

Attachments:

Answers

Answered by Anonymous
5

\large\sf\underline{\underline{To\: Prove-}}

\rm\implies\dfrac{tan\:A}{sec\:A-1}+\dfrac{tan\:A}{sec\:A+1}=2\:cosec\:A

‎ ‎ ‎

\large\sf\underline{\underline{Solution-}}

\rm\implies\dfrac{tan\:A}{sec\:A-1}+\dfrac{tan\:A}{sec\:A+1}=2\:cosec\:A

‎ ‎ ‎

◯ Consider LHS

\rm\implies\dfrac{tan\:A}{sec\:A-1}+\dfrac{tan\:A}{sec\:A+1}

‎ ‎ ‎

◯ Taking LCM

\rm\implies\dfrac{tan\:A\big(sec\:A+1\big)+tan\:A\big(sec\;A-1\big)}{\big(sec\:A-1\big)\big(sec\:A+1\big)}

‎ ‎ ‎

◯ Solve numerator

\rm\implies\dfrac{tan\:A.sec\:A+tan\:A+tan\:A.sec\:A-tan\:A}{\big(sec\:A-1\big)\big(sec\:A+1\big)}

◯ Simplifying it

\rm\implies\dfrac{2\:tan\:A.sec\:A}{\big(sec\:A-1\big)\big(sec\:A+1\big)}

‎ ‎ ‎

( A - B ) ( A + B ) = A²-

\rm\implies\dfrac{2\:tan\:A.sec\:A}{sec^2\:A-1}

‎ ‎ ‎

◯ sec² A - 1 = tan² A

\rm\implies\dfrac{2\:tan\:A.sec\:A}{tan^2\;A}

‎ ‎ ‎

◯ Cancel out tan A

\rm\implies\dfrac{2\:sec\:A}{tan\;A}

‎ ‎ ‎

◯ tan A = sec A / cosec A

\rm\implies\dfrac{2\:sec\:A}{\frac{sec\:A}{cosec\:A}}

‎ ‎ ‎

◯ Simplifying it

\rm\implies\dfrac{2\:sec\:A.cosec\:A}{sec\:A}

‎ ‎ ‎

◯ Cancel out sec A

\large\boxed{\purple{\rm\implies 2 cosec\:A}}

‎ ‎ ‎

Hence LHS = RHS !!!

Similar questions