Plz don't spam!!!!❤️
Answers
Answer:
Explanation:
Given,
Mass of the body, m = 0.8 kg
Initial velocity, u = ( 4i + 3j ) m/s
Final velocity, v = ( -6j + 2k ) m/s
Therefore,
Change in velocity, ∆v = v - u
=> ∆v =[ (-6j + 2k ) - ( 4i + 3j ) ] m/s
=> ∆v = (-6j + 2k - 4i - 3j ) m/s
=> ∆v = ( -4i - 9j + 2k ) m/s
Since,
the velocity is given in vector form,
we have to find it's magnitude,
Therefore,
Now,
we know that,
Change in Kinetic Energy ,
pUtting the respective values,
we get,
Answer:
here is ur ans..
m = 0.8 kg
Initial velocity, u = ( 4i + 3j ) m/s
Final velocity, v = ( -6j + 2k ) m/s
Therefore,
Change in velocity, ∆v = v - u
=> ∆v =[ (-6j + 2k ) - ( 4i + 3j ) ] m/s
=> ∆v = (-6j + 2k - 4i - 3j ) m/s
=> ∆v = ( -4i - 9j + 2k ) m/s
Since,
the velocity is given in vector form,
we have to find it's magnitude,
Therefore,
=>∣△v∣=42+92+22=>∣△v∣=16+81+4=>∣△v∣=101ms−1\begin{lgathered}= > | \triangle{v}| = \sqrt{ {4}^{2} + {9}^{2} + {2}^{2} } \\ \\ = > | \triangle{v}| = \sqrt{16 + 81 + 4} \\ \\ = > | \triangle{v}| = \sqrt{101} \: m {s}^{ - 1}\end{lgathered}
=>∣△v∣=
4
2
+9
2
+2
2
=>∣△v∣=
16+81+4
=>∣△v∣=
101
ms
−1
we know
Change in Kinetic Energy ,
△K.E=12m∣△v∣2\triangle{K.E} \: = \frac{1}{2} m {| \triangle{v}|}^{2}△K.E=
2
1
m∣△v∣
2
pUtting the respective values,
we get,
△K.E=12×0.8×(101)2=>△K.E=0.4×101=>△K.E=40.4Kgm2s−2\begin{lgathered}\triangle{K.E} = \frac{1}{2} \times 0.8 \times { (\sqrt{101} )}^{2} \\ \\ = > \triangle{K.E} = 0.4 \times 101 \\ \\ = > \bold{\triangle{K.E} = 40.4 \: Kg \:{ m}^{2} {s}^{ - 2} } \:\end{lgathered}
△K.E=
2
1
×0.8×(
101
)
2
=>△K.E=0.4×101
=>△K.E=40.4Kgm
2
s
−2