Math, asked by fod2, 4 months ago

plz don't spam here.... ​

Attachments:

Answers

Answered by BrainlyEmpire
1

\large{\red{\bold{\underline{Given:}}}}

\sf \: Coordinates \: of \: the \: vertices \: are: \:  x(2,2), \: y(3,3) \: and \: z(4,5)

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: Centroid \: of \: the \: triangle

\large{\blue{\bold{\underline{Formula \: Used:}}}} \\  \\ \sf \:Coordinates \: of \:Centroid =   \: (\frac{x_{1} + x_{2} + x_{3}}{3} ),( \frac{y_{1} + y_{2} + y_{3}}{3})

\large{\red{\bold{\underline{Solution:}}}} \\  \\  \: \sf \: On \: considering \: the \: respective \: coordinates \: as :

 \sf \: x(2,2) \: \rightarrow \: (x_{1}, y_{1}) \\ \\\sf \: y(3,3) \: \rightarrow \: (x_{2}, y_{2})  \\  \\  \sf \: z(4,5) \: \rightarrow \: (x_{3}, y_{3})

\large{\pink{\bold{\underline{Now:}}}} \\ \\ \rightarrow \: \sf \: Centroid = ( \frac{2 + 3 + 4}{3}) ,( \frac{2 + 3 + 5}{3} ) \\ \\  \rightarrow \sf \: Centroid = ( \frac{\cancel9}{\cancel3}) , (\frac{10 }{3} ) \\  \\ \rightarrow \sf \: Centroid = ( \frac{3}{1} ),( \frac{10}{3} ) \\  \\ \rightarrow \sf \: Centroid = (3,3.3)

\large{\orange{\bold{\underline{Therefore:}}}} \\  \\  \sf \: The \: coordinates \: of \: Centroid \: of \: the \: triangle \\ \sf \: is \: (3,3.3).

Answered by Anonymous
11

Answer:

The answer

\large{\red{\bold{\underline{Solution:}}}} \\  \\  \: \sf \: On \: considering \: the \: respective \: coordinates \: as :

 \sf \: x(2,2) \: \rightarrow \: (x_{1}, y_{1}) \\ \\\sf \: y(3,3) \: \rightarrow \: (x_{2}, y_{2})  \\  \\  \sf \: z(4,5) \: \rightarrow \: (x_{3}, y_{3})

\large{\pink{\bold{\underline{Now:}}}} \\ \\ \rightarrow \: \sf \: Centroid = ( \frac{2 + 3 + 4}{3}) ,( \frac{2 + 3 + 5}{3} ) \\ \\  \rightarrow \sf \: Centroid = ( \frac{\cancel9}{\cancel3}) , (\frac{10 }{3} ) \\  \\ \rightarrow \sf \: Centroid = ( \frac{3}{1} ),( \frac{10}{3} ) \\  \\ \rightarrow \sf \: Centroid = (3,3.3)

hope this helps you

Similar questions