plz don't spam here.
Answers
Sum of the 8th Terms is 136 and that of first 15 terms is 465.
To Find:-
Sum of first 25 Terms = ?
Explanation:-
We know that,
Here,
a = First Term
D = Common Difference
-------Eq(1)
-------Eq(2)
★ Substituting the Value of d in Equation (1)
Now, Finding the Sum of 25 Terms
Answer:
Sum of the 8th Terms is 136 and that of first 15 terms is 465.
To Find:-
Sum of first 25 Terms = ?
Explanation:-
We know that,
\bigstar\;\:\small{\underline{\boxed{\sf{\red{\dfrac{n}{2} 2a \:+\:(n\:-\:1)d}}}}}★
2
n
2a+(n−1)d
Here,
a = First Term
D = Common Difference
⟶
2
8
(2a+(8−1)d=136
\longrightarrow\sf\: 2a + 7d = 136⟶2a+7d=136 -------Eq(1)
\rule{150}2
\longrightarrow\sf\: \dfrac{15}{2} (2a \:+\:(15\:-\:1)d = 465⟶
2
15
(2a+(15−1)d=465
\longrightarrow\sf\: 2a \:+\:14d \:=\:\dfrac{465\times\: 2}{15}⟶2a+14d=
15
465×2
\longrightarrow\sf\: 2a + 14d = 62⟶2a+14d=62 -------Eq(2)
\rule{150}2
\dag\:\small\bold{\underline{\sf{\blue{Now,\: Subtracting\: Equation\:(1)\:from\:(2)}}}}†
Now,SubtractingEquation(1)from(2)
\longrightarrow\sf\: 2a \: + \: 17d \: =\: 136⟶2a+17d=136
\longrightarrow\sf\:2a \:+\: 14d \:=\: 62⟶2a+14d=62
\longrightarrow\sf\: - 7d = - 28⟶−7d=−28
\longrightarrow\sf\: d = \dfrac{-28}{-7}⟶d=
−7
−28
\longrightarrow\large\boxed{\sf{\red{d\:=\: 4}}}⟶
d=4
★ Substituting the Value of d in Equation (1)
\longrightarrow\sf\: 2a + 7d = 34⟶2a+7d=34
\longrightarrow\sf\:2a + 7(4) = 34⟶2a+7(4)=34
\longrightarrow\sf\:2a + 28 = 34⟶2a+28=34
\longrightarrow\sf\:2a = 34 - 28⟶2a=34−28
\longrightarrow\sf\:2a = 6⟶2a=6
\longrightarrow\sf\:a = \cancel\dfrac{6}{2}⟶a=
2
6
\longrightarrow\large{\sf{\red{a \:=\: 3}}}⟶a=3
\rule{150}2
Now, Finding the Sum of 25 Terms
\longrightarrow\sf\: Sn = \dfrac{n}{2}(2a \:+\;(n \:-\:1)d⟶Sn=
2
n
(2a+(n−1)d
\longrightarrow\sf\: = \dfrac{25}{2}(6 + 24 \times \: 4)⟶=
2
25
(6+24×4)
\longrightarrow\sf\: \dfrac{25}{2} \times\: 102⟶
2
25
×102
\longrightarrow\large{\underline{\boxed{\sf{\pink{1275}}}}}⟶
1275
\small\bold{\underline{\sf{\blue{Hence,\;Sum\:of\: First\:25\;terms\: is\:1275}}}}
Hence,SumofFirst25termsis1275