PLZ. EXPLAIN IT
cos 2pi/15. cos 4pi/15. cos 8pi/15. cos 16pi/15 = 1/16 , how??? and also answer my previous question
Answers
Answered by
128
To Prove :cos 2pi/15. cos 4pi/15. cos 8pi/15. cos 16pi/15 = 1/16
Let L.H.S be cos 2π/15. cos 4π/15. cos 8π/15. cos 16π/15
cos 2π/15=cos (2x180)/15=cos(360/15)=cos24°
Similarly : cos 4π/15.=Cos48°
cos 8π/15=cos 96°
cos 16π/15=Cos 192°
∴L.H.S =cos24°Cos48°cos 96° Cos 192°
Multiply and Divide the equation by 16 sin24°
⇒(1/16 sin24°)[(2sin24°cos24°)(2Cos48°)(2cos 96°)(2 Cos 192°)]
⇒(1/16 sin24°)[Sin48°(2Cos48°)(2cos 96°)(2 Cos 192°)] [∵Sin2A=2sinACosA]
⇒(1/16 sin24°)[(2Sin48°Cos48)(2cos 96°)(2 Cos 192°)]
⇒(1/16 sin24°)([2sin96°cos96°)((2 Cos 192°)]
⇒(1/16 sin24°)([2sin192°Cos 192°)]
⇒(1/16 sin24°)[sin384°]
⇒sin384°/16 Sin 24°
⇒Sin(360+24)/16sin24°
⇒Sin24°/16 sin24°
⇒1/16
L.H.S=R.H.S
Hence proved
Let L.H.S be cos 2π/15. cos 4π/15. cos 8π/15. cos 16π/15
cos 2π/15=cos (2x180)/15=cos(360/15)=cos24°
Similarly : cos 4π/15.=Cos48°
cos 8π/15=cos 96°
cos 16π/15=Cos 192°
∴L.H.S =cos24°Cos48°cos 96° Cos 192°
Multiply and Divide the equation by 16 sin24°
⇒(1/16 sin24°)[(2sin24°cos24°)(2Cos48°)(2cos 96°)(2 Cos 192°)]
⇒(1/16 sin24°)[Sin48°(2Cos48°)(2cos 96°)(2 Cos 192°)] [∵Sin2A=2sinACosA]
⇒(1/16 sin24°)[(2Sin48°Cos48)(2cos 96°)(2 Cos 192°)]
⇒(1/16 sin24°)([2sin96°cos96°)((2 Cos 192°)]
⇒(1/16 sin24°)([2sin192°Cos 192°)]
⇒(1/16 sin24°)[sin384°]
⇒sin384°/16 Sin 24°
⇒Sin(360+24)/16sin24°
⇒Sin24°/16 sin24°
⇒1/16
L.H.S=R.H.S
Hence proved
Answered by
53
To find out the answer of this question I suggest u an easy method
U must remember this result first:
Cosα.cos2α.cos(2²α).cos(2³α).................cos(2^n-1 × α) = sin(2^n × α)/2^n ×sinα
ATQ,
Cos2π/15 . Cos 4π/15 . Cos4π/15 . Cos16π/15
Here,
n = 4
α = 2π/15
= (sin 2^4 × 2π/15) / (2^4 × sin2π/15)
= (sin × 32π/15) / (16 × sin 2π/15)
= sin (2π + 2π/15) / (16 × sin 2π/15)
= (sin 2π/15) / (16 × sin 2π/15)
Sin 2π/15 gets cancelled
= 1/16
Hence proved
Please mark me BRAINLIEST for telling a RESULT.
Similar questions