plz fast
model exam questinon
@8:00
Attachments:
Answers
Answered by
0
Given that : AD ⊥ BC and DB = 3CD
To prove : 2AB2 = 2AC2 + BC2
Proof :
BD + DC = BC
3CD + CD = BC
4CD = BC
CD = BC / 4
DB = 3CD = 3BC / 4.
In a right angle traingle ACD ,
AC2 = AD2 + CD2.
AC2 = AD2 + BC2 / 16 -------(1)
In a right angle traingle ABD ,
AB2 = AD2 + BD2.
AB2 = AD2 + 9BC2 / 16 -------(2).
Substracting (1) from (2) we obtain
AB2 - AC2 = 9BC2 / 16 - BC2 / 16
16(AB2 - AC2 ) = 8BC2
2(AB2 - AC2 ) = BC2
2AB2 = 2AC2 + BC2
Hence proved.
To prove : 2AB2 = 2AC2 + BC2
Proof :
BD + DC = BC
3CD + CD = BC
4CD = BC
CD = BC / 4
DB = 3CD = 3BC / 4.
In a right angle traingle ACD ,
AC2 = AD2 + CD2.
AC2 = AD2 + BC2 / 16 -------(1)
In a right angle traingle ABD ,
AB2 = AD2 + BD2.
AB2 = AD2 + 9BC2 / 16 -------(2).
Substracting (1) from (2) we obtain
AB2 - AC2 = 9BC2 / 16 - BC2 / 16
16(AB2 - AC2 ) = 8BC2
2(AB2 - AC2 ) = BC2
2AB2 = 2AC2 + BC2
Hence proved.
ria113:
is my ans right
Answered by
1
BC=DB+CD
=3CD+CD
=4CD
So, BC2=(4CD)2
=16CD2
CD2=BC2/16
In tri. ADB by pythagoras theorem,
AD2=AB2-BD2 ---i
In tri.ACD, by pythagoras theorem,
AD2=AC2-CD2 --ii
From i and ii, we have:
AB2-BD2=AC2-CD2
AB2-(3CD)2=AC2-CD2 (BD=3CD)
AB2-9CD2=AC2-CD2
AB2=AC2+8CD2
AB2=AC2+8(BC2/16)
AB2=AC2+BC2/2
Multiply both sides by 2
2AB2=2AC2+BC2 Proved
=3CD+CD
=4CD
So, BC2=(4CD)2
=16CD2
CD2=BC2/16
In tri. ADB by pythagoras theorem,
AD2=AB2-BD2 ---i
In tri.ACD, by pythagoras theorem,
AD2=AC2-CD2 --ii
From i and ii, we have:
AB2-BD2=AC2-CD2
AB2-(3CD)2=AC2-CD2 (BD=3CD)
AB2-9CD2=AC2-CD2
AB2=AC2+8CD2
AB2=AC2+8(BC2/16)
AB2=AC2+BC2/2
Multiply both sides by 2
2AB2=2AC2+BC2 Proved
Similar questions