Math, asked by mehjebinsultana12, 10 months ago

plz find the value of x and give the verification ​

Attachments:

Answers

Answered by Rohit18Bhadauria
7

Answer:

Value of x is 6/5

Given

\sf{\dfrac{3(2+x)-5(2x-3)}{5-3x}=9}

To Find:

  • Value of x

Solution

\longrightarrow\sf{\dfrac{3(2+x)-5(2x-3)}{5-3x}=9}

\longrightarrow\sf{3(2+x)-5(2x-3)=9(5-3x)}

\longrightarrow\sf{6+3x-10x+15=45-27x}

\longrightarrow\sf{27x+3x-10x=45-6-15}

\longrightarrow\sf{x(27+3-10)=45-21}

\longrightarrow\sf{x(20)=24}

\longrightarrow\sf{20x=24}

\longrightarrow\sf{x=\dfrac{24}{20}}

\longrightarrow\sf{x=\dfrac{6}{5}}

Verification:-

For verification, we have to put value of x in given equation

\sf{L.H.S.=\dfrac{3(2+\dfrac{6}{5} )-5(2\times\dfrac{6}{5}-3)}{5-3\times\dfrac{6}{5}}}

Using BODMAS,

\sf{L.H.S.=\dfrac{3(\dfrac{10+6}{5} )-5(\dfrac{12}{5}-3)}{5-\dfrac{18}{5}}}

\sf{L.H.S.=\dfrac{3(\dfrac{16}{5} )-5(\dfrac{12-15}{5})}{\dfrac{25-18}{5}}}

\sf{L.H.S.=\dfrac{(\dfrac{48}{5} )-5(\dfrac{-3}{5})}{\dfrac{7}{5}}}

\sf{L.H.S.=\dfrac{\dfrac{48}{5}+\dfrac{15}{5}}{\dfrac{7}{5}}}

\sf{L.H.S.=\dfrac{\dfrac{48+15}{5}}{\dfrac{7}{5}}}

\sf{L.H.S.=\dfrac{\dfrac{63}{5}}{\dfrac{7}{5}}}

\sf{L.H.S.=\dfrac{63}{7}}

\sf{L.H.S.=9}

\sf{L.H.S.=R.H.S.}

Hence Proved

Answered by codiepienagoya
0

The final answer is "1.8"

Step-by-step explanation:

\ Given \ value:\\\\\frac{3(2+x)-5(2x-3)}{5-3x}=9\\\\\ Solution:\\\\\frac{3(2+x)-5(2x-3)}{5-3x}=9\\\\\rightarrow \frac{6+3x-10x+15}{5-3x}=9\\\\\rightarrow \frac{9-7x}{5-3x}=9\\\\\rightarrow (9-7x)=9(5-3x)\\\\\rightarrow 9-7x=45-27x\\\\\rightarrow 27x-7x=45-9\\\\\rightarrow 20x=36\\\\\rightarrow x=\frac{36}{20}\\\\\rightarrow x=\frac{18}{10}\\\\\rightarrow x=1.8

Learn more:

  • Simplify:  https://brainly.in/question/8913062
Similar questions