Math, asked by supriyasingh964833, 1 month ago

plz give answer with solution !​

Attachments:

Answers

Answered by vivaanmehra89
2

Step-by-step explanation:

 =  > (x - 2)(x -  \frac{1}{2} ) \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \\  =  >  {x }^{2}  - 2x -  \frac{1}{2}x  + 1 \:  \:  \:  \:   \:  \\  =  > 2 {x}^{2}  - 4x - x + 2 \:  \:  \:  \:   \:   \:  \\  = > 2x {}^{2}  - 5x + 2  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  =  > ( - 2x {}^{2} ) + 5x + ( - 2)

According to the question,

 =  > p {x}^{2}  + 5x + r

By comparing....

P = - 2

R = - 2

P = R

Hence Proved

Answered by Anonymous
42

Answer:

Question :-

\mapsto \sf If\: both\: (x - 2)\: and\: \bigg(x - \dfrac{1}{2}\bigg)\: are\: factors\: of\: px^2 + 5x + r, prove\: that\: p =\: r\: .

Solution :-

Given :

\leadsto \sf (x - 2)\: and\: \bigg(x - \dfrac{1}{2}\bigg)\: are\: factors\: of\: px^2 + 5x + r\: .

when, (x - 2) = 0 :

\implies \sf x - 2 =\: 0

\implies \sf\bold{\green{x =\: 2}}

So, by putting x = 2 we get,

\implies \bf{px^2 + 5x + r =\: 0}

\implies \sf p(2)^2 + 5(2) + r =\: 0

\implies \sf p(4) + 10 + r =\: 0

\implies \sf 4p + 10 + r =\: 0

\implies \sf\bold{\purple{4p + r =\: - 10\: ------\: (Equation\: No\: 1)}}\\

Again, when, (x - 1/2) = 0 :

\implies \sf x - \dfrac{1}{2} =\: 0

\implies \sf\bold{\green{x =\: \dfrac{1}{2}}}\\

So, by putting x = ½ we get,

\implies \bf{px^2 + 5x + r =\: 0}

\implies \sf p\bigg(\dfrac{1}{2}\bigg)^2 + 5\bigg(\dfrac{1}{2}\bigg) + r =\: 0

\implies \sf p\bigg(\dfrac{1}{4}\bigg) + \dfrac{5}{2} + r

\implies \sf \dfrac{p}{4} + \dfrac{5}{2} + r =\: 0

\implies \sf \dfrac{p + 10 + 4r}{4} =\: 0

By doing cross multiplication we get,

\implies \sf p + 10 + 4r =\: 0(4)

\implies \sf p + 10 + 4r =\: 0

\implies \sf p + 4r =\: - 10

\implies \sf\bold{\purple{p =\: - 10 - 4r\: ------\: (Equation\: No\: 2)}}\\

Now, by putting the value of p in the equation no 1 we get,

\implies \sf 4p + r =\: - 10

\implies \sf 4(- 10 - 4r) + r =\: - 10

\implies \sf - 40 - 16r + r =\: - 10

\implies \sf - 40 - 15r =\: - 10

\implies \sf - 15r =\: - 10 + 40

\implies \sf - 15r =\: 30

\implies \sf r =\: \dfrac{\cancel{30}}{- \cancel{15}}

\implies \sf r =\: \dfrac{2}{- 1}

\implies \sf\bold{\red{r =\: - 2}}

Again, by putting the value of r in the equation no 1 we get,

\longrightarrow \sf 4p + r =\: - 10

\longrightarrow \sf 4p + (- 2) =\: - 10

\longrightarrow \sf 4p - 2 =\: - 10

\longrightarrow \sf 4p =\: - 10 + 2

\longrightarrow \sf 4p =\: - 8

\longrightarrow \sf p =\: \dfrac{- \cancel{8}}{\cancel{4}}

\longrightarrow \sf p =\: \dfrac{- \cancel{4}}{\cancel{2}}

\longrightarrow \sf p =\: \dfrac{- 2}{1}

\longrightarrow \sf\bold{\red{p =\: - 2}}

Hence, we have :

  • p = - 2
  • r = - 2

\leadsto \sf p =\: r

\leadsto \sf\bold{- 2 =\: - 2}

\leadsto \bf{L.H.S =\: R.H.S}

\mapsto \sf\boxed{\bold{\pink{Hence\: Proved}}}\\

Similar questions