Plz give correct answer in step by step explanation plz...correct answer will be marked BRAINLIEST and be followed....✌
Answers
Given, AM=BM=CM
therefore, ∆AMC and ∆MCB are isosceles.
since, angle CAM = Angle MCA,
angle MBC = MCB
Now in (I) case,
we have, angle CAM = 60°
angle CAM = angle MCA = 60° (given)
In ∆CMA,
angle( CAM + AMC + ACM ) = 180°
120° + angle CMA = 180°
angle CMA = 60°
angle( CMA + CMB ) = 180°. (linear pair)
angle CMB = 120°
In ∆MCB,
angle( MCB + MBC + CMB ) = 180°
2 angle MCB = 180 - 120
angle MCB = 30°
angle ACB = angle( ACM + MCB)
angle ACB = 60 + 30
angle ACB = 90°
Second case,
when, AMC = 36°
In∆AMC,
angle( AMC + CAM + MCA ) = 180°
2 angle MCA = 180
angle MCA = 90°
angle( AMC + CMB) = 180°. { linear pair}
angle CMB = 144°
In∆CMB,
angle( MCB + MBC + CMB ) = 180°
2 angle MCB = 180 - 144
2 angle MCB = 36
angle MCB = 18°
angle ACB = angle( MCA + MCB)
angle ACB = 90 + 18
angle ACB = 108°
third case,
angle BMC = 100°
In ∆ MBC,
angle( MBC + MCB+ CMB) = 180
2 MCB = 180 - 100
Angle MCB = 40°
angle CMA = 180 - 100 { linear pair }
angle CMA = 80°
In ∆ CMA,
angle ( MCA + CMA + CAM) = 180°
2 MCA = 180 - 80
angle MCA = 50°
angle ACB = angle ( ACM + BCM}
angle ACB = 50 + 40