Physics, asked by wwwuamuam, 10 months ago

Plz give explanation​

Attachments:

Answers

Answered by Unni007
80

Given,

  • Efficiency (η) = 80% = \sf\dfrac{80}{100}
  • Number of turns in primary (\sf N_p) = 300
  • Number of turns in secondary (\sf N_s) = 1200
  • Resistance in primary (\sf R_p) = 0.82 Ω
  • Resistance in secondary (\sf R_s) = 6.2 Ω
  • Secondary voltage (\sf V_s) = 1600 V  
  • Out Power = 32 kW = 32 × 10³ W

We know,

\huge\boxed{\sf Power_{out} =  V_sI_s}

\implies\huge\boxed{\sf I_s=\dfrac{Power_{out}}{V_s}}

\implies\sf I_s=\dfrac{32\times 10^3}{1600}

\implies\sf I_s=20\:A

Efficiency,

\huge\boxed{\sf \eta =\dfrac{Power_{out}}{Power_{in}}}

\implies\sf \dfrac{80}{100}=\dfrac{32\times 10^3}{Power_{in}}

\implies\sf Power_{in}=\dfrac{32\times10^3\times100}{80}

\implies\sf Power_{in}=\dfrac{32\times 10^4}{8}

\implies\sf Power_{in}=4\times 10^4\:W

We know,

\huge\boxed{\sf \dfrac{N_s}{N_p}=\dfrac{V_s}{V_p}}

\implies\huge\boxed{\sf V_p=\dfrac{V_sN_p}{N_s}}

Applying the values to the equation,

\implies\sf V_p=\dfrac{1600\times 300}{1200}

\implies\sf V_p=400\:V

\huge\boxed{\sf Power_{in}=V_pI_p}

\implies\huge\boxed{\sf I_p=\dfrac{Power_{in}}{V_p}}

\implies\sf I_p=\dfrac{40000}{400}

\implies\sf I_p=100\:A

\huge\boxed{\sf Power \:loss \:in \:primary = I^2_p}

\implies\sf R_p= (100)^2 \times 0.82

\implies\sf R_p= 8200\:W

\implies\sf R_p= 8.2\:kW

\huge\boxed{\sf Power \:loss \:in \:secondary = I^2_s}

\implies\sf R_s= (20)^2 \times 6.2

\implies\sf R_s= 2480\:W

\implies\sf R_s= 2.48\:kW

________________________

Therefore,

\huge\boxed{\sf Power \:loss \:in \:primary = 8.2\:kW}

\huge\boxed{\sf Power \:loss \:in \:secondary =2.48\:kW}

Answered by itsme354
4

Answer:

akka inbox pannunga ka

Similar questions