Math, asked by Sakshi3090, 7 months ago

plz give the answer..no spam ​

Attachments:

Answers

Answered by fiitjeeharsh
2

Step-by-step explanation:

plz confirm that is my answer right

Attachments:
Answered by Anonymous
9

Question :

If ,  \frac{\sqrt{7}-1}{ \sqrt{7}+1 } - \frac{\sqrt{7}+1}{\sqrt{7}- 1} = a + b\sqrt{7}, find {a}^{2} + {b}^2

 \huge \underline  \mathfrak \red {Answer}

 \frac{ \sqrt{7} - 1 }{ \sqrt{7} + 1 }  -  \frac{ \sqrt{7}  + 1}{ \sqrt{7}  - 1}

 \frac{( \sqrt{7}  - 1)( \sqrt{7} - 1)  - ( \sqrt{7} + 1)( \sqrt{7} + 1)  }{ (\sqrt{7} + 1)( \sqrt{7} - 1)  }

 \frac{7 + 1 - 2 \sqrt{7} - (7 + 1 + 2 \sqrt{7} ) }{7 - 1}

simplify

 \frac{8 - 2 \sqrt{7} - 8 - 2 \sqrt{7}  }{6}

 \frac{ - 4 \sqrt{7} }{6}

 \frac{ - 2 \sqrt{7} }{3}

on comparing,

a = 0

b =  \frac{ - 2 }{3}

so,

 {a}^{2}  +  {b}^{2}  = ( { \frac{ -2}{3}) }^{2}

  \implies \frac{4}{9}

Similar questions