Math, asked by gangabhorkade0406, 10 months ago

plz give the step by step solution​

Attachments:

Answers

Answered by VishnuPriya2801
9

Answer:-

We have to prove:

 \sf \:  \frac{ \sin\theta  - 2 { \:  \sin }^{3}  \theta}{2 \:  { \cos }^{3}  \theta -  \cos\theta}  =  \tan \theta \\  \\

Taking Sin ∅ / Cos ∅ in LHS we get,

 \sf \implies \:  \frac{ \sin\theta(1 - 2 { \sin }^{2}   \theta)}{ \cos \theta( { 2\cos }^{2}   \theta - 1)} =  \tan \theta \\  \\  \implies \:  \tan \theta(\frac{1 - 2 { \sin}^{2}  \theta}{ { 2\cos}^{2} \theta - 1 } )=  \tan \theta \\  \\

We know that,

Sin² ∅ + Cos² ∅ = 1

→ Sin² ∅ = 1 - Cos² ∅

Putting the value of Sin² ∅ we get,

 \sf \implies \:  \tan \theta \: ( \frac{1 - 2(1 -  { \cos }^{2} \theta) }{2 { \cos}^{2}  \theta - 1} ) =  \tan\theta \\  \\  \sf \implies \:  \tan \theta( \frac{1 - 2  +  2 { \cos }^{2}  \theta)}{2 { \cos }^{2}  \theta - 1}  ) =  \tan \theta \\  \\  \sf \implies \:  \tan \theta( \frac{2 { \cos}^{2}  \theta - 1 }{2 { \cos }^{2} \theta - 1 } ) =  \tan \theta \\  \\  \sf \implies \:  \tan \theta(1) =   \tan \theta \\  \\  \sf \implies \:  \tan \theta =  \tan \theta \\  \\   \implies\sf \large{LHS = RHS.}

Hence, Proved.

Similar questions