Math, asked by symashah000, 1 month ago

Plz guys solve this it's urgent​

Attachments:

Answers

Answered by vitex1504
0

Answer:

Answer is 16

Step-by-step explanation:

please mark as brainliest

Answered by MysticSohamS
0

Step-by-step explanation:

to \: prove \: that :  \\  \frac{c {}^{2} }{d {}^{2} }  =  \frac{a {}^{2}  + c {}^{2} }{b {}^{2} + d {}^{2}  }  \\  \\ a : b = c : d \:  \:  \:  \:  \:  \: (given) \\  \\  \frac{a}{b}  =  \frac{c}{d}  \\  \\ let \: then \\  \frac{a}{b}  =  \frac{c}{d}  = k   \\ which \: implies \: that \\ a = bk \: ,  \: c = dk \\  \\ taking \: LHS \\  =  \frac{c {}^{2} }{d  {}^{2}  }  =  \frac{(dk) {}^{2} }{d {}^{2} }  \\  \\  =  \frac{d {}^{2} k {}^{2} }{d {}^{2} }  \\  \\  LHS= k {}^{2}  \\  \\ now \: taking \: RHS \\  =  \frac{a {}^{2} + c {}^{2}  }{b {}^{2}  + d {}^{2} }  \\  \\  =  \frac{(bk) {}^{2}  + (dk) {}^{2} }{b {}^{2}  + d {}^{2} }  \\  \\  =  \frac{b {}^{2} k {}^{2}  + d {}^{2}k {}^{2}  }{b {}^{2} + d {}^{2}  }  \\  \\  =  \frac{k {}^{2} (b {}^{2} + d {}^{2} ) }{b {}^{2}  + d {}^{2}  } \\  \\  = k {}^{2}  \\  \\  = LHS

Similar questions