plz help in solving this
Attachments:
Answers
Answered by
1
here's the answer. hope you understand
Attachments:
shashank2043:
i understood urs answer
Answered by
1
L.H.S
(1+tan²@) + (1+1/tan²@),
sec²@ + (tan²@+1)/tan²@,
sec²@ + sec²@/tan²@,
sec²@[1+1/tan²@],
sec²@[tan²@+1]/tan²@,
sec²@.sec²@/tan²@,
1/cos²@ . 1/cos²@ . cos²@/sin²@,
1/sin²@.cos²@,
now taking R.H.S, we have
1/[sin²@(1-sin²@)],
1/[sin²@.cos²@],
hence
L.H.S = R.H.S
(1+tan²@) + (1+1/tan²@),
sec²@ + (tan²@+1)/tan²@,
sec²@ + sec²@/tan²@,
sec²@[1+1/tan²@],
sec²@[tan²@+1]/tan²@,
sec²@.sec²@/tan²@,
1/cos²@ . 1/cos²@ . cos²@/sin²@,
1/sin²@.cos²@,
now taking R.H.S, we have
1/[sin²@(1-sin²@)],
1/[sin²@.cos²@],
hence
L.H.S = R.H.S
Similar questions