Math, asked by 100kill, 1 year ago

plz help in this question​

Attachments:

Answers

Answered by bhatiamona
0

Answer:

8,12,16 & 20

Step-by-step explanation:

Let take first term of AP as 'a'

and let d be the difference

First term = a

2nd term = a+d

3rd term= a+2d

4th term= a+3d

We have given that ratio of product of 1st and 4th and 2nd and 3rd term is 5/6

i.e.

a×(a+3d)/(a+d)×(a+2d)= 5/6

6a(a+3d)= 5(a+d)×(a+2d)

6a²+18ad= 5a²+15ad+10d²

a²+3ad-10d²=0

a²+5ad-2ad-10d²=0

a(a+5d)-2d(a+5d)= 0

(a+5d)(a-2d)=0

a=2d  ........................(1)

Further,

sum of all terms is 56

a+a+d+a+2d+a+3d= 56

4a+6d= 56  .........(2)

putting the value of (1) in (2)

4a+ 3a= 56

a= 8

first term=8

2nd term= 8+4=12

3rd term=8+4×2= 16

4th term= 8+4×3= 20

Answered by nitkumkumar
0

Answer:

The 4 numbers are  8 , 12 , 16 , 20

                         or   20 , 16 , 12 , 8

Step-by-step explanation:

As, 4 numbers are in AP so, we can take them as -

a-3d , a-d  ,  a+d , a+3d

It is given that sum of these 4 numbers is 56 so -

(a-3d)+(a-d)+(a+d)+(a+3d) = 56

=>   4a =  56

=> a =  14

Also, it is given that ratio of product of extremes to product of means is 5 :6

=>  [(a-3d) * (a+3d)]/[(a-d) * (a+d)] =  5/6

=>   [(14-3d) * (14+3d)]/[(14-d) * (14+d)] =  5/6

=>    (196 - 9d²)/(196 - d²)  =  5/6

=>   (1176 -  54d²)  =  (980 - 5d²)

=>   196  =  49d²

=>   d²   =   4

=>  d  =  2  or   -2

So, the 4 numbers are = a-3d , a-d  ,  a+d , a+3d

                                     =  14-3*2 , 14-2  ,  14+2 , 14+3*2

                                     =  8 , 12 , 16 , 20

Also, the 4 numbers can be = a-3d , a-d  ,  a+d , a+3d

                                     =  14-3*(-2) , 14+2  ,  14-2 , 14+3*(-2)

                                     =  20 , 16 , 12 , 8

Similar questions