Math, asked by Anonymous, 9 months ago

plz help,it's urgent
unnecessary answers will be reported

Attachments:

Answers

Answered by Anonymous
24

☆ Question (1) :

If \sf{tan35^{\circ} = a} , then Prove that

\sf{\dfrac{tan145^{\circ} - tan125^{\circ}}{1 + tan145^{\circ}tan125^{\circ}} = \dfrac{1 - a^{2}}{2a}}

\\

☆ To Find :

To Proof that LHS = RHS.

\\

☆ We Know :

  • \sf{\dfrac{tanA - tanB}{1 + tanAtanB} = tan(A - B)}

\\

  • \sf{\dfrac{2tanA}{1 - tan^{2}A} = tan2A}

\\

  • \sf{tanAtan(90^{\circ} - A) = 1}

\\

☆ Concept :

We Know that ,

\sf{\dfrac{2tanA}{1 - tan^{2}A} = tan2A}

so, by dividing 1 by both the sides, we get :

\implies \sf{\dfrac{1}{\dfrac{2tanA}{1 - tan^{2}A}} = \dfrac{1}{tan2A}} \\ \\ \\ \\ \implies \sf{\dfrac{1 - tan^{2}A}{2tanA} = \dfrac{1}{tan2A}} \\ \\ \\ \\ \therefore \purple{\sf{\dfrac{1}{tan2A} = \dfrac{1 - tan^{2}A}{2tanA}}}

Now, by simplifying the Equation in the Formulae we can Proof that LHS = RHS.

\\

☆ Solution :

Given :

  • \sf{tan35^{\circ} = a}

Calculation :

\sf{\dfrac{tan145^{\circ} - tan125^{\circ}}{1 + tan145^{\circ}tan125^{\circ}} = \dfrac{1 - a^{2}}{2a}}

\\

Using the formula ,

\sf{\dfrac{tanA - tanB}{1 + tanAtanB} = tan(A - B)}

\\

We get :

\\

\implies \sf{tan(145^{\circ} - 125^{\circ}) = \dfrac{1 - a^{2}}{2a}} \\ \\ \\ \\ \implies \sf{tan20^{\circ} = \dfrac{1 - a^{2}}{2a}}

\\

Putting the value of a in the Equation , we get :

\\

\implies \sf{tan20^{\circ} = \dfrac{1 - tan^{2}35^{\circ}}{2tan35^{\circ}}} \\ \\ \\ \implies \sf{tan20^{\circ} = \dfrac{1 - tan(35^{\circ})^{2}}{2tan35^{\circ}}} \\ \\ \\ \sf{tan20^{\circ} = \dfrac{1 - tan^{2}35^{\circ}}{2tan35^{\circ}}}

\\

Using the formula ,

\\

\sf{\dfrac{1}{tan2A} = \dfrac{1 - tan^{2}A}{2tanA}}

\\

We get :

\\

\implies \sf{tan20^{\circ} = \dfrac{1}{tan2 \times 35^{\circ}}} \\ \\ \\ \\ \implies \sf{tan20^{\circ} = \dfrac{1}{tan70^{\circ}}} \\ \\ \\

By multiplying 70° on both the sides, we get :

\\

\implies \sf{tan20^{\circ} \times 70^{\circ} = \dfrac{1}{tan70^{\circ}} \times 70^{\circ}} \\ \\ \\ \implies \sf{tan20^{\circ}tan70^{\circ} = 1}

\\

Using the formula ,

\\

\sf{tanAtan(90^{\circ} - A) = 1}

\\

We get ,

\\

\implies \sf{tan20^{\circ}tan(90^{\circ} - 20^{\circ} = 1} \\ \\ \\ \\ \implies \sf{1 = 1} \\ \\ \\ \therefore \purple{\sf{1 = 1}}

\\

Hence , LHS = RHS is proved.

\\

\\

☆ Question (2) :

\\

Evaluate : \sf{cos75^{\circ}}

\\

☆ To Find :

\\

The value of \sf{cos75^{\circ}}.

\\

☆ We Know :

\\

  • \sf{cos(A + B) = cosAcosB - sinAsinB}

\\

☆ Concept :

According to the question , we have to find the value of \sf{cos75^{\circ}} , and we know that it can be also written as \sf{cos(45^{\circ} + 30^{\circ})}

\\

So by solving this , we can find the value of \sf{cos75^{\circ}}

\\

☆ Calculation :

We Know :

  • \sf{cos45^{\circ} = \dfrac{1}{\sqrt{2}}}

  • \sf{cos30^{\circ} = \dfrac{\sqrt{3}}{2}}

  • \sf{sin30^{\circ} = \dfrac{1}{\sqrt{2}}}

  • \sf{sin45^{\circ} = \dfrac{1}{\sqrt{2}}}

\\

Equation :

\purple{\sf{cos(45^{\circ} + 30^{\circ})}}

\\

By using the formula ,

\\

\sf{cos(A + B) = cosAcosB - sinAsinB}

\\

We get ,

\\

\implies \sf{cos45^{\circ}cos30^{\circ} - sin45^{\circ}sin30^{\circ}}

\\

Putting the value of cos45° and 30° in the Equation , we get :

\\

\implies \sf{\dfrac{1}{\sqrt{2}} \times \dfrac{\sqrt{3}}{2} - \dfrac{1}{\sqrt{2}} \times \dfrac{1}{2}} \\ \\ \\ \implies \sf{\dfrac{\sqrt{3}}{2\sqrt{2}} - \dfrac{1}{2\sqrt{2}}} \\ \\ \\ \implies \sf{\dfrac{\sqrt{3} - 1}{2\sqrt{2}}} \\ \\ \\ \therefore \purple{\sf{cos75^{\circ} = \dfrac{\sqrt{3} - 1}{2\sqrt{2}}}}

\\

Hence , the value of \sf{cos75^{\circ}} is \dfrac{\sqrt{3} - 1}{2\sqrt{2}}

Answered by Anonymous
5

☆☆☆☆☆☆☆☆☆☆☆☆☆

1)

GIVEN:-

 \bf{ \tan35 \degree  = a }

PROVE THAT:-

 \bf{ \frac{ \tan45 \degree -  \tan125 \degree }{1 +  \tan145 \degree \tan125 \degree  } } =  \frac{1 -  {a}^{2} }{2a}

SOLUTION:-

 \bf{ \tan145 \degree =  \tan(180 \degree - 35 \degree)  =  -  \tan35 \degree =  - a,  }

 \bf{ \tan125 \degree =  \tan(90 \degree  + 35\degree)  =  -   \cot35 \degree =  -  \frac{1}{ \tan35 \degree}  =  -  \frac{1}{a}  }

 \bf{ L.H.S =  \frac{ \tan145 \degree -  \tan125 \degree}{1 +  \tan 145 \degree \tan125 \degree}  =  \frac{( - a) - ( \frac{ - 1}{a}) }{1 + ( - a)( \frac{ - 1}{a} )}   =  \frac{ - a +  \frac{1}{a} }{1 + 1} }

 \bf{ = \frac{  { - a}^{2} + 1 }{2a}   =  \frac{1 -  {a}^{2} }{2a}  =  R.H.S }

☆☆☆☆☆☆☆☆☆☆☆☆☆

2)

 \bf{ \cos75 \degree}

 \bf{ =  \cos(30 + 45)}

= cos 30 cos 45 - sin 30 sin 45

( °.° cos (A+B) = cos A cos B - sin A sin B)

\bf{\frac{√3}{2}.\frac{1}{√2}-\frac{1}{2}.\frac{1}{√2}}

= \bf{\frac{√3-1}{2√2}}

\bf{\frac{√3-1}{2√2}\times\frac{√2}{√2}}

\bf{\frac{√6-√2}{4}}

☆☆☆☆☆☆☆☆☆☆☆☆☆

Similar questions