Math, asked by guptuv2003, 10 months ago

plz help me
find x And y

here x and y both belongs to integer


615+(x)^2=2^y

Answers

Answered by sourya1794
10

\huge\boxed{\fcolorbox{#7fff00}{white}{Hello Dear}}\huge\bold\pink{{{{{{Answer}}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

First, x must be odd.

as ,615 is odd and{2}^{y}=even and odd+odd=even but odd+ even=odd and y>9 and square of an odd have unit digits like 1,9,5,9

So,{615}+{x}^{2} have unit digits 6,4,0.

So, {2}^{y} have unit digits 4 & 6 .

so,

y is even=2k

so, 615+{x}^{2}={2}^{y}

615=({2}^{k}+x) ({2}^{k}-x)

So,we must split 615 as product of two natural number.

Then ,{615}={41} * {15}={123} * {5}={205} *{3}

Now,

Let x and y positive integer then only acceptable value is

{2}^{k}+x=123…........…i

and,

{2}^{k}-x=5...........……ii

Now,

(i) + (ii)

{2}^{(k+1)}=128

k=6

y=12

(i) - (ii)

2x=118

x=59

So,x=59 & y=12

If x negative integer then

{2}^{k}+x=5……...........i

and,

{2}^{k}-x=123…...........ii

(i) + (ii)

{2}^{(k+1)}=128

k=6

y=12

(i) - (ii)

2x=-118

x=-59

So,x=-59 & y=12

So,y=12 & x=59,-59.

━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions