plz help me guys.....
Answers
Proof :
L.H.S. = xy + yz + zx
= xyz = R.H.S.
Hence, proved.
Answer:
Step-by-step explanation:
Proof :
x=1+log_{a}bc
\implies x=1+\frac{log_{e}bc}{log_{e}a}
\implies x=\frac{log_{e}a+log_{e}bc}{log_{e}a}
\implies x=\frac{log_{e}abc}{log_{e}a}
y=1+log_{b}ca
\implies y=1+\frac{log_{e}ca}{log_{e}b}
\implies y=\frac{log_{e}b+log_{e}ca}{log_{e}b}
\implies y=\frac{log_{e}abc}{log_{e}b}
z=1+log_{c}ab
\implies z=1+\frac{log_{e}ab}{log_{e}c}
\implies z=\frac{log_{e}c+log_{e}ab}{log_{e}c}
\implies z=\frac{log_{e}abc}{log_{e}c}
L.H.S. = xy + yz + zx
=\frac{(log_{e}abc)^{2}}{log_{e}a\:log_{e}b}+\frac{(log_{e}abc)^{2}}{log_{e}b\:log_{e}c}+\frac{(log_{e}abc)^{2}}{log_{e}c\:log_{e}a}
=\frac{\{(log_{e}abc)^{2}\}(log_{e}c+log_{e}a+log_{e}b)}{log_{e}a\:log_{e}b\:log_{e}c}
=\frac{(log_{e}abc)^{3}}{log_{e}a\:log_{e}b\:log_{e}c}
=\frac{log_{e}abc}{log_{e}a}\frac{log_{e}abc}{log_{e}b}\frac{log_{e}abc}{log_{e}c}
= xyz = R.H.S.