Plz help me .....
.in solving this question
Answers
Step-by-step explanation:
We have,
∠BAC = 90°, seg AD, BE and CF are medians.
(i) In ΔBAC:
⇒ AB² + AC² = 2AD² + 2BD²
⇒ AB² + AC² - 2BD² = 2AD²
⇒ AB² + AC² - (1/2) BC² = 2AD²
⇒ 2AB² + 2AC² - BC² = 4AD²
Likewise,
⇒ 2AB² + 2BC² - AC² = 4BE² ------ (ii)
⇒ 2AC² + 2BC² - AB² = 4CF² ------ (iii)
On solving (i), (ii) & (iii), we get
⇒ 2AB² + 2AC² - BC² + 2AB² + 2BC² - AC² + 2AC² + 2BC² - AB² = 4AD² + 4BE² + 4CF²
⇒ 3AB² + 3AC² + 3BC² = 4AD² + 4BE² + 4CF²
⇒ 3(AB² + AC² + BC²) = 4(AD² + BE² + CF²)
Now,
Given, ∠BAC = 90°
∴ BC² = AB² + AC²
⇒ 3(BC + BC² ) = 4(AD² + BE² + CF²)
⇒ 6BC² = 4(AD² + BE² + CF²)
⇒ 3BC² = 2(AD² + BE² + CF²).
Hope it helps!
math]AE+EB=AB[/math]
2. [math]BD+DC=BC[/math]
3.[math] CF+FA=CA[/math]
adding 1 and 2 gives,
4. [math]AD + DC = AB + BC[/math]
adding 2 and 3 gives,
5. [math]BF+FA = BC + CA[/math]
adding 3 and 1 gives,
6. [math]CE+EB= CA + AB[/math]
Adding 4, 5 & 6 gives,
AD+BF+CE + DC+FA+EB = 2(AB+BC+CA)
AD+BF+CE + [math]\frac{1}{2}[/math](AB+BC+CA) = 2(AB+BC+CA)
(since D, E & F are the midpoints of AB, BC and CA)
but, from triangle law of vector addition we have,
[math]AB+BC+CA = 0[/math]
therefore,
[math]AD+BF+CE=0[/math]
Q.E.D
In the above proof I have used the notation