Math, asked by Gagan5f004, 1 year ago

plz help me to solve this

Attachments:

Answers

Answered by tinku0007
0
I hope this is the correct answer
Attachments:
Answered by Prashant24IITBHU
1
Here is the solution

= \frac{cos45}{sec30+cosec30}

= \frac{cos45}{ \frac{1}{cos30} + \frac{1}{sin30} }

= \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2}{ \sqrt{3} } + \frac{2}{1} }

= \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2+2 \sqrt{3} }{ \sqrt{3} }}

= \frac{1}{ \sqrt{2} } * \frac{ \sqrt{3} }{2+2 \sqrt{3} }

= \frac{ \sqrt{3} }{2 \sqrt{2} +2 \sqrt{6} }

=  \frac{1}{2}[ \frac{ \sqrt{3} }{ \sqrt{2} + \sqrt{6} }]

=  \frac{1}{2}[ \frac{ \sqrt{3} }{ \sqrt{2} + \sqrt{6} }* \frac{\sqrt{2} - \sqrt{6}}{\sqrt{2} - \sqrt{6}} ]

=  \frac{1}{2}[ \frac{ \sqrt{6}-3 \sqrt{2}  }{ 2-6 } ]

=   \frac{ 3 \sqrt{2}-\sqrt{6}  }{ 8 }
Similar questions