Math, asked by pahalpathak8, 2 months ago

plz help with this question​

Attachments:

Answers

Answered by Anonymous
16

Step-by-step explanation:

 \rm \:(i) \:   \frac{1}{ \sqrt{9} -  \sqrt{8}  }  \\    \sf \: Multiplying \:  \sqrt{9}  +  \sqrt{8}  \: on  \: both\: \: \\ \leadsto \:  \frac{ \sqrt{9} +  \sqrt{8}  }{ (\sqrt{9} -  \sqrt{8} )( \sqrt{9} +  \sqrt{8}  ) }  \\  \rm \leadsto \:  \frac{ \sqrt{9}  +  \sqrt{8} }{9 - 8} \\  \rm \leadsto  \frac{ \sqrt{9} +  \sqrt{8}  }{1}  \\  \rm \leadsto \:  \sqrt{9}  +  \sqrt{8}  \\  \rm \leadsto \: 3 + 2 \sqrt{2}

(ii) \rm \:   {5}^{ \frac{1}{3} }   \times  {25}^{ \frac{1}{3} }  \\  \twoheadrightarrow \:  {5}^{ \frac{1}{3} }  \times ( {5})^{2 \times  \frac{1}{3} }  \\ \twoheadrightarrow {5}^{ \frac{1}{3} }  \times  {5}^{ \frac{2}{3 } }  \\ \twoheadrightarrow {5}^{ \frac{1}{3}  +  \frac{2}{3} }  \{  \rm \: {a}^{b}  \times  {a}^{c}  =  {a}^{b + c }  \} \\ \twoheadrightarrow {5}^{ \frac{3}{3} }  \\ \twoheadrightarrow {5}^{1}  \\ \twoheadrightarrow5

Answered by Anonymous
2

Step-by-step explanation:

2. \:  \:  \frac{1}{ \sqrt{9} -  \sqrt{8}  }

On rationalizing the denominator,

 \frac{1}{ \sqrt{9} -  \sqrt{8}  }  \times  \frac{ \sqrt{9}  +  \sqrt{8} }{ \sqrt{9} +  \sqrt{8}  }

 \frac{ \sqrt{9} +  \sqrt{8}  }{( \sqrt{9}  -  \sqrt{8})( \sqrt{9} +  \sqrt{8}   )  }

 \frac{ \sqrt{9}  +  \sqrt{8} }{ {( \sqrt{9}) }^{2} -  {( \sqrt{8} )}^{2}  }

 \frac{ \sqrt{9}  + \sqrt{8}  }{9 - 8}

  \frac{ \sqrt{9} +  \sqrt{8}  }{1}

3 +  \sqrt{8}

3. \:  \:  {(5)}^{ \frac{1}{3} }  \times  {25}^{ \frac{1}{3} }

 {(5)}^{ \frac{1}{3} }  \times  {(5}^{2} ) ^{ \frac{1}{3} }

 {(5)}^{ \frac{1}{3} }  \times  {(5)}^{ \frac{2}{3} }

 {(5)}^{ \frac{1}{3}  +  \frac{2}{3} }

 {(5)}^{ \frac{1 + 2}{3} }

 {(5)}^{ \frac{ \cancel3}{ \cancel3} }

5

I hope it is helpful

Similar questions