Math, asked by ItzISHA40, 17 days ago

Plz koi solve kr doe​

Attachments:

Answers

Answered by ReliableBoy
7

Given :-

 \begin{gathered}\\ \large\dashrightarrow\mathsf { \frac{2x - 17}{2}   - (x +  \frac{x - 1}{3} ) = 12} \\ \end{gathered}

Solution :-

  • Remove the parentheses.

 \begin{gathered}\\ \large\dashrightarrow\mathsf { \frac{2x - 17}{2} - x +  \frac{x - 1}{3}   = 12} \\ \end{gathered}

  • Multiply both sides.

 \begin{gathered}\\ \large\dashrightarrow\mathsf {3(2x - 17) - 6x + 2(x - 1) = 72} \\ \end{gathered}

  • Remove the parentheses.

 \begin{gathered}\\ \large\dashrightarrow\mathsf {6x - 51 - 6x + 2x - 2 = 72} \\ \end{gathered}

  • Remove the opposites and Calculate.

 \begin{gathered}\\ \large\dashrightarrow\mathsf { - 53 + 2x = 72} \\ \end{gathered}

  • Move the constant to the right.

 \begin{gathered}\\ \large\dashrightarrow\mathsf {2x = 72 + 52} \\ \end{gathered}

 \begin{gathered}\\ \large\dashrightarrow\mathsf {2x = 125} \\ \end{gathered}

Hence,

 \begin{gathered}\\ \large\dashrightarrow \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{\mathsf \pink{x =  \frac{125}{2} } }\\ \end{gathered}

  • Or

 \begin{gathered}\\ \large\dashrightarrow  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{\underline{ \boxed{\mathsf  \red{x = 62.5}}}} \\ \end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Answered by beenadwivedi11
0

Answer:

Given :-

\begin{gathered} \begin{gathered}\\ \large\dashrightarrow\mathsf { \frac{2x - 17}{2} - (x + \frac{x - 1}{3} ) = 12} \\ \end{gathered}\end{gathered}

2

2x−17

−(x+

3

x−1

)=12

Solution :-

Remove the parentheses.

\begin{gathered} \begin{gathered}\\ \large\dashrightarrow\mathsf { \frac{2x - 17}{2} - x + \frac{x - 1}{3} = 12} \\ \end{gathered}\end{gathered}

2

2x−17

−x+

3

x−1

=12

Multiply both sides.

\begin{gathered} \begin{gathered}\\ \large\dashrightarrow\mathsf {3(2x - 17) - 6x + 2(x - 1) = 72} \\ \end{gathered}\end{gathered}

⇢3(2x−17)−6x+2(x−1)=72

Remove the parentheses.

\begin{gathered} \begin{gathered}\\ \large\dashrightarrow\mathsf {6x - 51 - 6x + 2x - 2 = 72} \\ \end{gathered}\end{gathered}

⇢6x−51−6x+2x−2=72

Remove the opposites and Calculate.

\begin{gathered} \begin{gathered}\\ \large\dashrightarrow\mathsf { - 53 + 2x = 72} \\ \end{gathered}\end{gathered}

⇢−53+2x=72

Move the constant to the right.

\begin{gathered} \begin{gathered}\\ \large\dashrightarrow\mathsf {2x = 72 + 52} \\ \end{gathered}\end{gathered}

⇢2x=72+52

\begin{gathered} \begin{gathered}\\ \large\dashrightarrow\mathsf {2x = 125} \\ \end{gathered}\end{gathered}

⇢2x=125

Hence,

\begin{gathered} \begin{gathered}\\ \large\dashrightarrow \: \: \: \: \: \: \: \: \: \: \boxed{\mathsf \pink{x = \frac{125}{2} } }\\ \end{gathered}\end{gathered}

Or •

\begin{gathered} \begin{gathered}\\ \large\dashrightarrow \: \: \: \: \: \: \: \: \: \red{\underline{ \boxed{\mathsf \red{x = 62.5}}}} \\ \end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions