Math, asked by brarishwarjot5, 10 months ago

plz plz ans marks r 10+ i will mark brainlest​

Attachments:

Answers

Answered by Anonymous
2

Answer:

99

Step-by-step explanation:

First, notice that y is just the reciprocal of x, so

   xy = 1.

Next, notice that

 x² + y² + xy = ( x² + y² - 2xy ) + 3xy = ( y - x )² + 3

so we just need to get y-x.

Now

y - x = \frac{\textstyle\sqrt3+\sqrt2}{\textstyle\sqrt3-\sqrt2} - \frac{\textstyle\sqrt3-\sqrt2}{\textstyle\sqrt3+\sqrt2}\\\\=\frac{\textstyle(\sqrt3+\sqrt2)^2-(\sqrt3-\sqrt2)^2}{\textstyle(\sqrt3-\sqrt2)(\sqrt3+\sqrt2)}\\\\=\frac{\textstyle(3+2+2\sqrt6)-(3+2-2\sqrt6)}{\textstyle3-2}\\\\=4\sqrt6

So, finally, we get

 x² + y² + xy = ( y - x )² + 3 = (4√6)² + 3 = 16×6 + 3 = 96 + 3 = 99

Hope this helps you!

Answered by Anonymous
1

Answer: 99

Step-by-step explanation:

x =\frac{\sqrt{3} - \sqrt{2} }{\sqrt{3} +\sqrt{2} }  \\x =\frac{\sqrt{3} - \sqrt{2} }{\sqrt{3} +\sqrt{2} }*\frac{\sqrt{3} -\sqrt{2} }{\sqrt{3} -\sqrt{2} }\\        (multiplying and dividing by \sqrt{3} -\sqrt{2})

x =\frac{(\sqrt{3} - \sqrt{2})^2 }{(\sqrt{3})^2 -(\sqrt{2})^2 }              ( ∵ (a+b)(a-b)= a^2-b^2 )

x =\frac{(\sqrt{3} - \sqrt{2})^2 }{(3 -2) }

x ={(\sqrt{3} - \sqrt{2})^2 }

x = 3+2-2*\sqrt{3} *\sqrt{2}          (∵ (a-b)^2 = a^2 + b^2 -2ab )

x = 5-2\sqrt{6}  

similarly, doing same for y, we get

y = (\sqrt{3} +\sqrt{2} )^2

y= 5 + 2\sqrt{6}

now, x^2+y^2+xy = (x+y)^2 -xy   (∵  (x+y)^2 = x^2 + y^2 +2xy ) .... (1)

x+y = 5 -2\sqrt{6} + 5 +2\sqrt{6}  = 5+5 = 10   and

xy= (5+2\sqrt{6} )(5-2\sqrt{6} ) = (5)^2 -(2\sqrt{6} )^2 = 25-4*6 =25-24=1

so putting x+y=10 and xy=1 in equation (1)

x^2+y^2+xy = (x+y)^2 -xy

                     = (10)^2-1\\= 100-1\\=99

so x^2+y^2+xy = 99

Similar questions