Math, asked by pushpajha7654, 2 months ago

plz plz plz plz solve it​

Attachments:

Answers

Answered by TheBrainlistUser
3

\large\bf\underline\red{Question  \: :- }</h3><h3>

\sf{if \: n = 2 +  \sqrt{3} \:  \: then \:find \:  \bigg( n +  \frac{1}{n}  \bigg) {}^{3}   } \\

\large\bf\underline\red{Answer \:  :- }

First we find the value of in bracket then find the cube of the value.

\sf\longmapsto{ \bigg(2 +  \sqrt{3}  +  \frac{1}{2 +  \sqrt{3} } \bigg) {}^{3}  } \\  \\ \sf\longmapsto{taking \: LCM \: } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \\  \\ \sf\longmapsto{ \bigg( \frac{(2 +  \sqrt{3} )(2 +  \sqrt{3} ) + 1}{2 +  \sqrt{3} } \bigg) {}^{3}  } \\  \\ \sf\longmapsto{ \bigg(\frac{(2 +  \sqrt{3} ) {}^{2} + 1}{2 +  \sqrt{3} } \bigg) {}^{3}} \\  \\ \sf\longmapsto{ \bigg(\frac{4 + 3+ 1}{2 +  \sqrt{3} } \bigg) {}^{3} }  \\  \\ \sf\leadsto{ \bigg(\frac{8}{2 +  \sqrt{3} } \bigg) {}^{3} }

Now we find the cube

\sf\longmapsto{  \frac{512}{8 +  \sqrt{27} }  } \\  \\ \sf\longmapsto{ \frac{64}{ \sqrt{27} } }

{\large{\underline{\boxed{\leadsto{\red{ \frac{64}{  \: \sqrt{27} } }}}}}}

__________________________________________

Answered by mathdude500
3

\large\underline{\sf{Given- }}

\rm :\longmapsto\:n = 2 +  \sqrt{3}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\: {\bigg(n + \dfrac{1}{n}  \bigg) }^{3}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:n = 2 +  \sqrt{3}

Consider,

\bf :\longmapsto\:\dfrac{1}{n}

\rm  \:  =  \: \:\dfrac{1}{2 +  \sqrt{3} }

On rationalizing the denominator, we get

\rm  \:  =  \: \:\dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

\rm  \:  =  \: \:\dfrac{2 -  \sqrt{3} }{ {2}^{2}  -  {( \sqrt{3}) }^{2} }

 \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2} -  {y}^{2}   \bigg \}}

\rm  \:  =  \: \:\dfrac{2 -  \sqrt{3} }{4 - 3}

\rm  \:  =  \: \:\dfrac{2 -  \sqrt{3} }{1}

\rm  \:  =  \: \:2 -  \sqrt{3}

\bf :\longmapsto\:\dfrac{1}{n} = 2 -  \sqrt{3}

So,

\rm :\longmapsto\: \bigg(n + \dfrac{1}{n} \bigg)^{3}

\rm  \:  =  \: \: {\bigg(2 +  \sqrt{3} + 2 -  \sqrt{3}  \bigg) }^{3}

\rm  \:  =  \: \: {4}^{3}

\rm  \:  =  \: \:64

Hence,

\bf :\longmapsto\: \bigg(n + \dfrac{1}{n} \bigg)^{3}  = 64

Additional Information :-

More Identities to know:

↝(a + b)² = a² + 2ab + b²

↝(a - b)² = a² - 2ab + b²

↝a² - b² = (a + b)(a - b)

↝(a + b)² = (a - b)² + 4ab

↝(a - b)² = (a + b)² - 4ab

↝(a + b)² + (a - b)² = 2(a² + b²)

↝(a + b)³ = a³ + b³ + 3ab(a + b)

↝(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions